Ультрафиолетовые волны применение. Ультрафиолетовое излучение и его влияние на организм

Ультрафиолетовые приборы используются в медицине, полиграфии, криминалистике, косметологи и других сферах деятельности.

Ультрафиолетовое излучение, не смотря на многие свои полезные свойства, при чрезмерном воздействии способно вызвать ожоги и другие необратимые изменения в организме.

Их применяют для лечения артрита, воспалительных заболеваний органов дыхания, стоматита, гнойных ран и других заболеваний, обеззараживания помещений, бактерицидной обработки воды, а также при уходе за домашними животными и комнатными растениями.

В настоящее время большой популярностью пользуются лампы в соляриях для придания коже ровного загара. Широкое распространение получили лампы для маникюрных салонов, так как они способствуют затвердеванию геля на ногтях и защищают ногти от грибка и различных бактерий.

Есть ли опасность от уф излучателей?

О безопасности использования УФ ламп можно судить по мощности излучения и материалу, из которого они изготовлены.

Кварцевые облучатели

Используются для обеззараживания, способны уничтожать болезнетворные вирусы и микробы. Но являются самыми опасными для живых организмов.

Во время работы кварцевой лампы происходит выделение озона, который сильно окисляет воздух, становится очень токсичным и повреждает органы дыхания.

Бактерицидные УФ лампы

Производятся из увиолевого стекла, которое отфильтровывает озонообразующие волны. Такие лампы можно применять в домашних условиях. Но бактерицидные свойства слабее, чем у кварцевых ламп, поэтому рекомендуется более длительное использование.

Амальгамные приборы

Лампы амальгамного типа имеют ряд достоинств. Они наиболее безопасные для окружающей среды, так как ртуть находится внутри в связанном, а не жидком состоянии. При этом амальгамные лампы очень мощные и эффективно справляются с задачей обеззараживания.

Вред в виде ожога при использовании УФ лампы

При долговременном действии ультрафиолета можно получить термические ожоги глаз и кожи.

В зависимости от степени тяжести ожога возможно проявление следующих симптомов:

  • болезненные ощущения;
  • зуд и жжение;
  • припухание и отечность век;
  • покраснение слизистой оболочки и кожных покровов;
  • слезотечение;
  • светочувствительность и светобоязнь;
  • ухудшение зрения;
  • образование корок и волдырей.

ВНИМАНИЕ! При получении термического ожога необходимо срочно обратиться за квалифицированной медицинской помощью!

Кроме ожога возможно проявление аллергической реакции в виде сыпи.

Как обезопасить человека от вредного излучения?

  1. Использовать ультрафиолетовые лампы только по назначению врача.
  2. Проконсультироваться со специалистом, чтобы правильно подобрать прибор для конкретных целей.
  3. Внимательно изучить технические характеристики и инструкцию.
  4. Мощность лампы должна соответствовать размерам помещения.
  5. Использовать закрытые лампы или специализированные приборы, так как они наиболее безопасны для людей.
  6. Не оставлять без присмотра детей и животных во время процедуры!
  7. Использовать специальные защитные очки и средства во избежание серьезных ожогов.
  8. После использования проветривать помещение.

ВАЖНО! Необдуманное применение ультрафиолетовых приборов и халатность влекут за собой печальные последствия.

Ультрафиолетовые лучи имеют самую большую биологическую активность. Если учесть природные условия, то наиболее мощным кладезем таких лучей считается солнце. Поверхности земли касается лишь длинноволновая часть, а коротковолновую поглощает атмосфера. Помимо, естественных источников существуют искусственные, излучению которых можно подвергаться непроизвольно или же с целью лечения.

Общая характеристика

Ультрафиолетовое излучение – это излучение электромагнитного характера, имеющее длину волн от десяти до четырехсот нм. Их испускание, а также поглощение осуществляется различными квантами энергии. В медицине применяют лучи, длина которых равна 180-400 нм. Помимо этого, ультрафиолетовое излучение имеет отдельные спектры, имеющие лечебные свойства, например:

  • А – от 315 до 400 нм;
  • В – от 280 до 315 нм;
  • С – от 180 до 280 нм.

Спектр А и В относят к длинноволновым лучам, а именно ДУФ, что касается группы С, то ее считают коротковолновой – КУФ.

УФ излучение владеет специфической активностью фотохимического характера, что активно и успешно применяют в медицине, а также на производстве. Облучение используют в процессе отбеливания тканей, синтезе конкретных веществ, получении витамина Д, производстве кожи лакированной, а также различных производственных манипуляциях. Важно учесть, что излучение имеет уникальные свойства, а именно – возможность организовать люминесценцию.

Ультрафиолетовое излучение оказывает влияние на следующий тип работников:

  • медицинский персонал;
  • сварщики;
  • технические работники;
  • в процессе стерилизации воды, а также светокопировки;
  • при плавке, литье металлов;
  • на производстве радиоламп.

Это важно! Ультрафиолетовые лучи способны изменять химическую структуру клеток, тканей.

Основные источники излучения

Ультрафиолетовое излучение имеет некоторые источники, а именно – естественные, искусственные. Что касается естественного источника, то к нему относятся солнечный свет, звезды, космические объекты и туманности. Земли достигает длинноволновая часть. Главный природный источник – солнце. Наибольшему воздействию подвержена та группа лиц, которая на протяжении длительного времени пребывает под солнечным светом.

Искусственные источники, оказывающие влияние на людей, подразделяются на несколько основных подгрупп:

Дуга сварки промышленной

Основным источником UVR экспозиции принято считать энергию оборудования для данной конструкции. УФ излучение достаточно высокое. Вызывает серьезное поражение кожного покрова, глаз, после 3-10 минут воздействия. Такое влияние возможно при нахождении в нескольких метрах от сварки. Именно поэтому работник, который занимается сваркой, обязан иметь специальную защиту для кожи, глаз.

Черный свет

Искусственный источник УФ излучений. Это специфическая лампа, которая занимается выработкой энергии ультрафиолетового диапазона. В основном их используют для испытаний порошков флуоресцентных с помощью адеструктивного способа, чтобы определить подлинность документов, банкнот и прочее. При воздействии на человеческий организм не причиняют существенного вреда.

Лампы рабочие и промышленные

UVR лампы – рабочие, промышленные. На производстве имеется множество процессов, которые используют указанную лампу. Например: фотохимический метод закрепления пластиков, чернил, красок. Воздействие на человека минимальное, так как применяется экранирование.

Лампа бактерицидная

Источник излучения – UVR лампа бактерицидная. В данной ситуации имеется УФ излучение, длина волн которого находится в диапазоне от 250 до 265 нм, что подходит для проведения дезинфекции, стерилизации. Их применение весьма удачно в медицинских учреждениях, цель которых – борьба с туберкулезом. Важно правильно установить такую лампу, а также воспользоваться защитой для глаз.

Загар косметический

Если человек пользуется услугами искусственного загара, то специальная кушетка может оказать воздействие на экспозицию кожного покрова УФ излучению. Кроме этого, работники таких салонов подвергаются постоянному влиянию низкочастотного ультрафиолета.

Освещение

На предприятиях, в домах и офисах широко используются лампы флуоресцентные, которые являются кладезем маленькой порции УФ излучения.

Как можно заметить, человек подвергается излучению не только на производстве, но и в домашних условиях.

Медицинское использование

Ультрафиолетовое излучение имеет широкое применение в современной медицине. Это обусловлено тем, что УФ лучи способны проводить болеутоляющий эффект, снижать повышенную возбудимость. Свойства излучений настолько уникальны, что благодаря им можно осуществить антирахитическое, а также антиспастическое воздействие. Под его влиянием наблюдается формирование витамина Д. В человеческом организме усиливается процесс окисления, ткани поглощают больше кислорода, что способствует выделению углекислоты. УФ излучение вызывает активацию ферментов, улучшение углеводного, белкового обмена, повышение уровня фосфатов и кальция в крови.

При правильном применении происходят следующие процессы:

  • повышение тонуса организма;
  • расширение сосудов;
  • снижение артериального давления;
  • улучшение циркуляции крови;
  • происходят регенеративные процессы.

Применение УФ излучения в медицине основывается на оказании десенсибилизирующего, противовоспалительного воздействия, что вызывает значительные улучшения.

Используя комплекс мероприятий, УФ облучение проводят с лечебной целью:

  • при заболеваниях кожного покрова;
  • рахит;
  • туберкулез суставов, костей, а также лимфатических узлов;
  • отморожения, ожоги;
  • болезни периферической нервной системы;
  • фиброзный туберкулез;
  • заживление травм;
  • гнойные раны.

Важно учесть имеющиеся противопоказания к данной процедуре:

  • быстрое истощение организма;
  • заболевания сердечно-сосудистой системы;
  • злокачественные опухоли;
  • болезни почек;
  • активная стадия легочного туберкулеза;
  • нарушения в работе ЦНС.

Следует помнить о температуре излучений, так как это очень важно. Тело вступает в процесс генерации, когда температура УФ излучений достигает отметки 1200 градусов.

Негативное влияние УФ

УФ облучение на протяжении длительного времени, сказывается негативным образом на здоровье человека, так как провоцирует развитие патологий. Если облучение значительное, проявляются такие симптомы:

  • вялость и апатия, быстрая утомляемость;
  • мигрени;
  • нарушение памяти;
  • повышенная сонливость;
  • отсутствие аппетита.

Чрезмерное влияние излучений ультрафиолета способно стать причиной:

  • ожогов;
  • дерматитов;
  • отечности и зуда;
  • гемолиза;
  • гиперкальцемии;
  • высокая температура тела;
  • разбитость и подавленность;
  • задержка в развитии и прочее.

Это важно! Помните о том, что любой дерматит может спровоцировать развитие онкологии.

Чтобы избежать негативных последствий, необходимо обеспечить себя специальной защитой. На производственных предприятиях стоит использовать шлемы, щитки и очки защитные, ширмы изолирующие, спецодежду, а также переносной экран. Что касается бытовых условий, то желательно пользоваться солнцезащитным кремом, спреем или лосьоном, а также носить очки с затемненными стеклами.

Большинство людей легко проводят параллель между солнечной радиацией и раком кожи.

Но редко кто осознает связь между этими же лучами и серьезными заболеваниями глаз.

Какие лучи наиболее опасны, когда и почему? Давайте разберемся.

УФ-излучение невидимо для человеческого глаза. Оно состоит из лучей разной длины.

  • Лучи категории UV-A достигают длины 315-400 нм. Они практически беспрепятственно проходят через атмосферу и проникают в ткани наиболее глубоко.
  • Лучи категории UV-B в длину 280-315 нм, они по большей части не проходят через озоновый слой. Но та часть высокоэнергетичного света, которая все же попадает на поверхность Земли, причиняет наибольшей вред.
  • Лучи категории UV-C в длину 280-200 нм, они блокируются озоновым слоем и практически не достигают поверхности Земли.

Источник УФ-лучей – Солнце. Большинство людей думает, но вредно лишь находиться под прямыми солнечными лучами. Но на самом деле не менее опасны отраженные лучи.

К примеру, от снежного покрова отражается до 85% лучей; от бетона и сухого песка примерно 25%; от травы – 3%. Также лучи прекрасно отражаются от поверхности воды. Таким образом, даже находясь в тени, мы подвергаемся воздействию солнечной радиации.

Кстати, источники искусственного света (лампы энергосбережения, люминисцентные лампы, лампы в солярии, бактерицидные лампы и т.п.) зачастую также излучают ультрафиолет.

Так, мы получаем свою дозу излучения не только находясь на улице, но даже в стенах своего дома или офиса.

Хотя ультрафиолетовые лучи дольно редко достигают сетчатки глаза взрослого человека, они наносят вред роговице и хрусталику. Вы наверняка замечали, как ближе к пожилому возрасту у человека происходит пожелтение хрусталика глаза, которое может развиться в катаракту.

Дети проводят намного больше времени на открытом воздухе, чем взрослые. А значит, они еще сильнее подвержены воздействию ультрафиолета.

Не до конца сформированный глаз ребенка больше подвергается вредному воздействию УФ-излучения.

Так, в течение первого года жизни 90% UV-A и 50% UV-B лучей достигают сетчатку.

В возрасте 10-13 лет то же самое происходит с 65% и 25% лучей соответственно.

Чем младше ребенок, тем больше его глаза подвержены вредному воздействию солнечной радиации.

К 18 годам жизни человек уже получает 25% излучения, которое обычно бывает в течение жизни.

Давайте разберемся, насколько и какие именно лучи способны проникнуть в ткани глаза.

  • Слезная пленка поглощает лучи, длина которых ниже 290 нм.
  • Здоровая роговица препятствует прохождению лучей длиной до 300 нм.
  • Хрусталик глаза взрослого человека задерживает практически все УФ-лучи длиной до 390 нм. Стекловидное тело «ловит» лучи, длина которых до 290 нм.
  • И только около 5% УФ-лучей достигают поверхности сетчатки глаза взрослого человека.

Полностью сформированный глаз имеет защитный механизм, который практически предотвращает травмирование сетчатки ультрафиолетом. Хотя риск повреждения роговицы и хрусталика глаза остается высоким в течение всей жизни.

Поэтому важно защищать глаза!

Солнцезащитные очки или оправы с прозрачными линзами средних и высоких индексов 100% защищают глаза от прямых солнечных лучей. А вот отраженные от задней поверхности линз лучи по-прежнему способны проникнуть в ткани глаза. Поэтому наиболее полная защита глаз достигается путем нанесения специальных покрытий также на внутреннюю поверхность линзы.

Кепки, шляпы и широкие дужки очков – дополнительные средства защиты.

Какие осложнения может вызвать UV-A и/или UV/B лучи:

  1. Фотокератит: боязнь света, болевые ощущения, мутное зрение.
  2. Солнечная ретинопатию. Возникает при наблюдении солнечного затмения, а иногда и при прямом взгляде на солнце без защитных очков.
  3. Рак роговицы и конъюнктивы
  4. Меланому глаза
  5. Катаракту и другие не менее опасные болезни.

Известно благотворное влияние солнечного излучения на синтез витамина D. Но нет фактов, доказывающих его благоприятное воздействие на глаза человека. В отличие от кожи, вред которой наносится преимущественно прямыми солнечными лучами, глаз испытывает негативное воздействие ультрафиолета практически везде (из-за отражений) и фактически круглый год.

Важно защищать глаза не только от естественной солнечной радиации, но и от той, которая вызывается искусственными источниками света.

Помните, что влияние УФ-излучения на глаза имеет накопительный эффект.

Ольга Шадьярова

Ультрафиолетовые лампы, используемые в оформлении

По мимо обычной росписи стен мы так же выполняем работы флюоресцентными красками. Такие краски светятся под ультрафиолетовыми лампами (лампами черного света), что позволяет создавать довольно необычную атмосферу. Наши клиенты часто интересуются безопасностью этих ламп для здоровья.
Попробуем разобраться в этом вопросе.

Ультрафиолетовое излучение (ультрафиолетовые лучи, УФ-излучение) - электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм.
Различают несколько типов УФ излучения, различных по воздействию на человека:

  • Ультрафиолет А, длинноволновой - 400-315 нм
  • Ультрафиолет B, средневолновой - 315-280 нм
  • Ультрафиолет С, коротковолновой - 280-100 нм

Чем короче длинна волны, тем большей энергией обладает излучение и тем глубже оно проникает сквозь ткани тела - так самое опасное для нас излучение типа С, а излучение типа А менее опасно.

Природным источником ультрафиолета является наше Солнце. Оно излучает во всех диапазонах, но благодаря атмосфере нашей планеты, и в частности озоновому слою, до нас доходит только излучение типа А и малая часть излучения типа В. Именно солнечный ультрафиолет вызывает загар на нашем теле и способствует выработке кожей витамина D.

Существуют разные виды ультрафиолетовых ламп:

  • УФ лампы (лампы черного света, black lights), используемые в оформлении, а так же лампы, используемые в детекторах валют, дают только излучение типа А длинной волны в районе 370 нм. Это довольно безопасный свет и находиться под такой лампой менее вредно для кожи и глаз, чем находиться под солнцем в ясную погоду. А при недостатке солнечного света, к примеру в зимнее время, находиться под такой лампой даже полезно, так как это способствует выработке витамина D и некоторых гормонов, повышающих настроение. Хотя и злоупотреблять этим так же не стоит. Так же не стоит по-долгу смотреть на саму лампу с близкого расстояния.
  • УФ лампы, используемые в соляриях дают излучение типов А и В, приближенных к солнечному ультрафиолету, и ввиду их мощности и количества, пребывание в солярии ограничивают несколькими минутами с обязательной защитой глаз специальными очками.
  • Так же существуют кварцевые и бактерицидные лампы, используемые в медицине для обеззараживания помещений. Бактерицидные лампы - излучение тип В, кварцевые - жесткое излучение тип С. Находиться под такими лампами ни в коем случае нельзя даже короткое время.

Глядя на лампу черного света мы видим только слабое фиолетовое свечение, хотя для насекомых такие лампы светятся очень ярко. Объясняется это тем, что наши глаза, в отличие от глаз насекомых имеют фильтр, который не позволяет УФ излучению типа А попадать на сетчатку. Служит это для защиты глаз, так как без этого фильтра наше зрение портилось бы уже к 20 годам.

Итак подведем итоги:
УФ лампы черного света, используемые в оформлении, довольно безопасны. Можно смело проводить под такой лампой по несколько часов в день. В зимнее же время при коротком солнечном дне включать УФ лампу на 30-60 минут в день (в зависимости от мощности лампы) даже полезно для здоровья. Лампы бывают как люминесцентные, так и светодиодные. Мощность лампы выбирается из расчета 1-2 ватт на квадратный метр.

История открытия

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века Shri Madhvacharya в его труде Anuvyakhyana . Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть обычным глазом.

Вскоре после того, как было обнаружено инфракрасное излучение , немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра , с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением».

Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в году в трудах Александра Беккереля , Македонио Меллони и др.

Виды ультрафиолетового излучения

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 нм - 300 нм 3.10 - 4.13 эВ
Средний MUV 300 нм - 200 нм 4.13 - 6.20 эВ
Дальний FUV 200 нм - 122 нм 6.20 - 10.2 эВ
Экстремальный EUV, XUV 121 нм - 10 нм 10.2 - 124 эВ
Вакуумный VUV 200 нм - 10 нм 6.20 - 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 нм - 315 нм 3.10 - 3.94 эВ
Ультрафиолет B (средний диапазон) UVB 315 нм - 280 нм 3.94 - 4.43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 нм - 100 нм 4.43 - 12.4 эВ

Чёрный свет

Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом .

Воздействие на здоровье человека

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

  • Ближний ультрафиолет, УФ-A лучи (UVA, 315-400 нм)
  • УФ-B лучи (UVB, 280-315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100-280 нм)

Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA, и, в небольшой доле - UVB.

Положительные эффекты

В ХХ веке было впервые показано, почему УФ - излучение оказывает благотворное воздействие на человека. Физиологическое действие Уф-лучей было исследовано отечественными и зарубежными исследователями в середине прошлого столетия (Г. Варшавер. Г. Франк. Н. Данциг, Н. Галанин. Н. Каплун, А. Парфенов, Е. Беликова. В. Dugger. J. Hassesser. Н. Ronge, Е. Biekford и др.) |1-3|. Было убедительно доказано в сотнях экспериментов, что излучение в УФ области спектра (290-400 нм) повышает тонус симпатико-адреналиновой системы, активирует защитные механизмы, повышает уровень неспецифического иммунитета, а также увеличивает секрецию ряда гормонов. Под воздействием УФ излучения (УФИ) образуются гистамин и подобные ему вещества, которые обладают сосудорасширяющим действием, повышают проницаемость кожных сосудов. Изменяется углеводный и белковый обмен веществ в организме. Действие оптического излучения изменяет легочную вентиляцию - частоту и ритм дыхания; повышается газообмен, потребление кислорода, активизируется деятельность эндокринной системы. Особенно значительна роль УФ излучения в образовании в организме витамина Д, укрепляющего костно-мышечную систему и обладающего антирахитным действием. Особо следует отметить, что длительная недостаточность УФИ может иметь неблагоприятные последствия для человеческого организма, называемые «световым голоданием». Наиболее частым проявлением этого заболевания является нарушение минерального обмена веществ, снижение иммунитета, быстрая утомляемость и т. п.

Несколько позже в работах (О. Г. Газенко, Ю. Е. Нефедов, Е. А. Шепелев, С. Н. Залогуев, Н. Е. Панферова, И. В. Анисимова) указанное специфическое действие излучения было подтверждено в космической медицине . Профилактическое УФ облучение было введено в практику космических полетов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ излучения)» . Оба документа являются надежной базой дальнейшего совершенствования УФ профилактики.

Отрицательное действие на кожу

Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар) приводит к ожогам .

Длительное действие ультрафиолета способствует развитию меланомы , различных видов рака кожи.

Действие на сетчатку глаза

  • Ультрафиолетовое излучение неощутимо для глаз человека, но при воздействии вызывает типично радиационное поражение (ожог сетчатки).Так, например, 1 августа 2008 года десятки россиян повредили сетчатку глаза во время солнечного затмения. Они жаловались на резкое снижение зрения и пятно перед глазами.

Источники ультрафиолета

Природные источники

Основной источник ультрафиолетового излучения на Земле - Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

  • от концентрации атмосферного озона над земной поверхностью (см. озоновые дыры)
  • от возвышения Солнца
  • от высоты над уровнем моря
  • от атмосферного рассеивания
  • от состояния облачного покрова
  • от степени отражения УФ-лучей от поверхности (воды, почвы)

Искусственные источники

Благодаря созданию и совершенствованию искусственных источников УФ излучения, шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются как ряд крупнейших электроламповых фирм (Osram, LightTech,

  • Эритемные лампы (ЛЭЗО, ЛЭР40) были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина D3 в коже человека («антирахитное действие»).

В 70-80 годах эритемные ЛЛ, кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтеров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.

Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны λ < 300нм, которое в естественных условиях вообще отсутствует, может достигать 20 % от общего УФ излучения. Обладая хорошим «анитирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305-315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза). Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа TL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жесткой» УФ ЛЛ типа TL01 используются в медицине для лечения фотодерматозов. Диапазон существующих УФ ИИ. которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путем легирования кварца, либо с помощью специальных светофильтров, входящих в комплект облучателя.

  • В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий », в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара . В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне УФА Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5 % от общего УФ излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 160 Вт и длиной от 30 до 180 см.
  • В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и называют сокращенно SAD (Seasonal Affective Disorders). Заболевание связано с недостаточной инсоляцией, то есть естественным освещением. По оценкам специалистов, синдрому SAD подтверждено ~ 10-12 % населения земли и прежде всего жители стран Северного полушария. Известны данные по США: в Нью-Йорке - 17 %, на Аляске - 28 %, даже во Флориде - 4 %. По странам Северной Европы данные колеблются от 10 до 40 %.

В связи с тем, что SAD является, бесспорно, одним из проявлений «солнечном недостаточности», неизбежен возврат интереса к так называемым лампам «полного спектра», достаточно точно воспроизводящим спектр естественного света не только в видимой, но и в УФ области. Ряд зарубежных фирм включило ЛЛ полного спектра в свою номенклатуру, например, фирмы Osram и Radium выпускают подобные УФ ИИ мощностью 18, 36 и 58 Вт под названиями, соответственно, «Biolux» и «Biosun», спектральные характеристик которых практически совпадают. Эти лампы, естественно, не обладают «антирахитным эффектом», но помогают устранять у людей ряд неблагоприятных синдромов, связанных с ухудшением здоровья в осенне-зимний период и могут также использоваться в профилактических целях в ОУ школ, детских садов, предприятий и учреждений для компенсации «светового голодания». При этом необходимо напомнить, что ЛЛ «полного спектра» по сравнению c ЛЛ цветности ЛБ имеют световую отдачу примерно на 30 % меньше, что неизбежно приведет к увеличению энергетических и капитальных затрат в осветительно-облучательной установке. Проектирование и эксплуатация подобных установок должны осуществляться с учетом требований стандарта CTES 009/E:2002 «Фотобиологическая безопасность ламп и ламповых систем».

  • Весьма рациональное применение найдено УФЛЛ, спектр излучения которых совпадает со спектром действия фототаксиса некоторых видов летающих насекомых-вредителей (мух, комаров, моли и т. д.), которые могут являться переносчиками заболеваний и инфекций, приводить к порче продуктов и изделий.

Эти УФ ЛЛ используются в качестве ламп-аттрактантов в специальных устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах, складах одежды и пр.

  • Ртутно-кварцевая лампа
  • Люминесцентные лампы «дневного света» (имеют небольшую УФ-составляющую из ртутного спектра)

Сфера применения

Чёрный свет

Лампа чёрного света - лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт очень немного видимого света.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Ультрафиолетовое излучение, даваемое лампами чёрного света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека.

Стерилизация

Стерилизация воздуха и твёрдых поверхностей

Кварцевая лампа, используемая для стерилизации в лаборатории

Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. В наиболее распространённых лампах низкого давления 86 % излучения приходится на длину волны 254 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 254 нм, которое оказывает наибольшее влияние на ДНК, однако кварцевое стекло, ранее используемое для изготовления колбы лампы, также как и другие природные вещества (например, вода) задерживают проникновение УФ. Степень дезинфекции зависит от дозы, которая равна произведению интенсивности на время. Излучение «ненужных» для дезинфекции длин волн приводит к тому, что для облучения объекта необходимой дозой УФ лампе требуется большее количество времени, а следовательно снижается КПД устройства. Вот почему в настоящее время на замену морально устаревших кварцевых бактерицидных ламп, которые имели сравнительно низкий КПД по причине низкой пропускной способности, а также из-за того, что излучали весь спектр УФ при необходимой длине волны равной исключительно 254 нм, приходят УФ лампы нового поколения, в которых с внутренней стороны стекла нанесено покрытие, разработанное с применением нано-технологий, позволяющее увеличить пропускную способность стекла только для УФ волн с длиной равной 254 нм. Это позволяет в разы уменьшить энергопотребление УФ лампами и увеличить их эффективность.

Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Дезинфекция питьевой воды

Метод дезинфекции с использованием УФ-излучения доказал свою эффективность при дезактивации переносимых водой болезнетворных микроорганизмов и вирусов без ухудшения вкуса и запаха воды и без внесения в воду нежелательных побочных продуктов. Такой метод дезинфекции завоёвывает популярность в качестве альтернативы или дополнения к традиционным средствам дезинфекции, таким как хлор, из-за своей безопасности, экономичности и эффективности.

Принцип действия УФ-излучения . УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства. УФ-излучение в диапазоне длин волн около 254 нм хорошо проникает сквозь воду и стенку клетки переносимого водой микроорганизма и поглощается ДНК микроорганизмов, вызывая нарушение её структуры. В результате прекращается процесс воспроизводства микроорганизмов.

Хотя по эффективности обеззараживаня воды УФ обработка в десятки раз уступает озонированию, на сегодняшний день использование УФ-излучения - один из самых эффективных и безопасных способов обеззараживания воды в случаях, когда объем обрабатываемой воды не велик.

Химический анализ

УФ - спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением , длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс - длина волны, образует спектр . Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала - флюорит и циркон - не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон - лимонно-жёлтым.» (с. 11).