Правильная призма треугольная какой треугольник в основе. Геометрическая фигура призма

С помощью этого видеоурока все желающие смогут самостоятельно познакомиться с темой «Понятие многогранника. Призма. Площадь поверхности призмы». В ходе занятия учитель расскажет о том, что представляют собой такие геометрические фигуры, как многогранник и призмы, даст соответствующие определения и объяснит их суть на конкретных примерах.

С помощью этого урока все желающие смогут самостоятельно познакомиться с темой «Понятие многогранника. Призма. Площадь поверхности призмы».

Определение . Поверхность, составленную из многоугольников и ограничивающую некоторое геометрическое тело, будем называть многогранной поверхностью или многогранником.

Рассмотрим следующие примеры многогранников:

1. Тетраэдр ABCD - это поверхность, составленная из четырех треугольников: АВС , ADB , BDC и ADC (рис. 1).

Рис. 1

2. Параллелепипед ABCDA 1 B 1 C 1 D 1 - это поверхность, составленная из шести параллелограммов (рис. 2).

Рис. 2

Основными элементами многогранника являются грани, ребра, вершины.

Грани - это многоугольники, составляющие многогранник.

Ребра - это стороны граней.

Вершины - это концы ребер.

Рассмотрим тетраэдр ABCD (рис. 1). Укажем его основные элементы.

Грани : треугольники АВС, ADB, BDC, ADC .

Ребра : АВ, АС, ВС, DC , AD , BD .

Вершины : А, В, С, D .

Рассмотрим параллелепипед ABCDA 1 B 1 C 1 D 1 (рис. 2).

Грани : параллелограммы АА 1 D 1 D, D 1 DСС 1 , ВВ 1 С 1 С, АА 1 В 1 В, ABCD, A 1 B 1 C 1 D 1 .

Ребра : АА 1 , ВВ 1 , СС 1 , DD 1 , AD, A 1 D 1 , B 1 C 1 , BC, AB, A 1 B 1 , D 1 C 1 , DC.

Вершины : A, B, C, D, A 1 ,B 1 ,C 1 ,D 1 .

Важным частным случаем многогранника является призма.

АВСА 1 В 1 С 1 (рис. 3).

Рис. 3

Равные треугольники АВС и А 1 В 1 С 1 расположены в параллельных плоскостях α и β так, что ребра АА 1 , ВВ 1 , СС 1 параллельны.

То есть АВСА 1 В 1 С 1 - треугольная призма, если:

1) Треугольники АВС и А 1 В 1 С 1 равны.

2) Треугольники АВС и А 1 В 1 С 1 расположены в параллельных плоскостях α и β: ABC А 1 B 1 C (α ║ β).

3) Ребра АА 1 , ВВ 1 , СС 1 параллельны.

АВС и А 1 В 1 С 1 - основания призмы.

АА 1 , ВВ 1 , СС 1 - боковые ребра призмы.

Если с произвольной точки Н 1 одной плоскости (например, β) опустить перпендикуляр НН 1 на плоскость α, то этот перпендикуляр называется высотой призмы.

Определение . Если боковые ребра перпендикулярны к основаниям, то призма называется прямой, а в противном случае - наклонной.

Рассмотрим треугольную призму АВСА 1 В 1 С 1 (рис. 4). Эта призма - прямая. То есть, ее боковые ребра перпендикулярны основаниям.

Например, ребро АА 1 перпендикулярно плоскости АВС . Ребро АА 1 является высотой этой призмы.

Рис. 4

Заметим, что боковая грань АА 1 В 1 В перпендикулярна к основаниям АВС и А 1 В 1 С 1 , так как она проходит через перпендикуляр АА 1 к основаниям.

Теперь рассмотрим наклонную призму АВСА 1 В 1 С 1 (рис. 5). Здесь боковое ребро не перпендикулярно плоскости основания. Если опустить из точки А 1 перпендикуляр А 1 Н на АВС , то этот перпендикуляр будет высотой призмы. Заметим, что отрезок АН - это проекция отрезка АА 1 на плоскость АВС .

Тогда угол между прямой АА 1 и плоскостью АВС это угол между прямой АА 1 и её АН проекцией на плоскость, то есть угол А 1 АН .

Рис. 5

Рассмотрим четырехугольную призму ABCDA 1 B 1 C 1 D 1 (рис. 6). Рассмотрим, как она получается.

1) Четырехугольник ABCD равен четырехугольнику A 1 B 1 C 1 D 1 : ABCD = A 1 B 1 C 1 D 1 .

2) Четырехугольники ABCD и A 1 B 1 C 1 D 1 ABC А 1 B 1 C (α ║ β).

3) Четырехугольники ABCD и A 1 B 1 C 1 D 1 расположены так, что боковые ребра параллельны, то есть: АА 1 ║ВВ 1 ║СС 1 ║DD 1 .

Определение . Диагональ призмы - это отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.

Например, АС 1 - диагональ четырехугольной призмы ABCDA 1 B 1 C 1 D 1 .

Определение . Если боковое ребро АА 1 перпендикулярно плоскости основания, то такая призма называется прямой.

Рис. 6

Частным случаем четырёхугольной призмы является известный нам параллелепипед. Параллелепипед ABCDA 1 B 1 C 1 D 1 изображен на рис. 7.

Рассмотрим, как он устроен:

1) В основаниях лежат равные фигуры. В данном случае - равные параллелограммы ABCD и A 1 B 1 C 1 D 1 : ABCD = A 1 B 1 C 1 D 1 .

2) Параллелограммы ABCD и A 1 B 1 C 1 D 1 лежат в параллельных плоскостях α и β: ABC A 1 B 1 C 1 (α ║ β).

3) Параллелограммы ABCD и A 1 B 1 C 1 D 1 расположены таким образом, что боковые ребра параллельны между собой: АА 1 ║ВВ 1 ║СС 1 ║DD 1 .

Рис. 7

Из точки А 1 опустим перпендикуляр АН на плоскость АВС . Отрезок А 1 Н является высотой.

Рассмотрим, как устроена шестиугольная призма (рис. 8).

1) В основании лежат равные шестиугольники ABCDEF и A 1 B 1 C 1 D 1 E 1 F 1 : ABCDEF = A 1 B 1 C 1 D 1 E 1 F 1 .

2) Плоскости шестиугольников ABCDEF и A 1 B 1 C 1 D 1 E 1 F 1 параллельны, то есть основания лежат в параллельных плоскостях: ABC А 1 B 1 C (α ║ β).

3) Шестиугольники ABCDEF и A 1 B 1 C 1 D 1 E 1 F 1 расположены так, что все боковые ребра между собой параллельны: АА 1 ║ВВ 1 …║FF 1 .

Рис. 8

Определение . Если какое-нибудь боковое ребро перпендикулярно плоскости основания, то такая шестиугольная призма называется прямой.

Определение . Прямая призма называется правильной, если её основания - правильные многоугольники.

Рассмотрим правильную треугольную призму АВСА 1 В 1 С 1 .

Рис. 9

Треугольная призма АВСА 1 В 1 С 1 - правильная, это значит, что в основаниях лежат правильные треугольники, то есть все стороны этих треугольников равны. Также данная призма - прямая. Значит, боковое ребро перпендикулярно плоскости основания. А это значит, что все боковые грани - равные прямоугольники.

Итак, если треугольная призма АВСА 1 В 1 С 1 - правильная, то:

1) Боковое ребро перпендикулярно плоскости основания, то есть является высотой: AA 1 АВС .

2) В основании лежит правильный треугольник: ∆АВС - правильный.

Определение . Площадью полной поверхности призмы называется сумма площадей всех её граней. Обозначается S полн .

Определение . Площадью боковой поверхности называется сумма площадей всех боковых граней. Обозначается S бок .

Призма имеет два основания. Тогда площадь полной поверхности призмы:

S полн = S бок + 2S осн.

Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Доказательство проведем на примере треугольной призмы.

Дано : АВСА 1 В 1 С 1 - прямая призма, т. е. АА 1 АВС .

АА 1 = h.

Доказать : S бок = Р осн ∙ h.

Рис. 10

Доказательство .

Треугольная призма АВСА 1 В 1 С 1 - прямая, значит, АА 1 В 1 В, АА 1 С 1 С, ВВ 1 С 1 С - прямоугольники.

Найдем площадь боковой поверхности как сумму площадей прямоугольников АА 1 В 1 В, АА 1 С 1 С, ВВ 1 С 1 С:

S бок = АВ∙ h + ВС∙ h + СА∙ h = (AB + ВС + CА) ∙ h = P осн ∙ h.

Получаем, S бок = Р осн ∙ h, что и требовалось доказать.

Мы познакомились с многогранниками, призмой, её разновидностями. Доказали теорему о боковой поверхности призмы. На следующем уроке мы будем решать задачи на призму.

  1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил.
  2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил.
  1. Якласс ().
  2. Shkolo.ru ().
  3. Старая школа ().
  4. WikiHow ().
  1. Какое минимальное число граней может иметь призма? Сколько вершин, ребер у такой призмы?
  2. Существует ли призма, которая имеет в точности 100 ребер?
  3. Боковое ребро наклонено к плоскости основания под углом 60°. Найдите высоту призмы, если боковое ребро равно 6 см.
  4. В прямой треугольной призме все ребра равны. Площадь ее боковой поверхности составляет 27 см 2 . Найдите площадь полной поверхности призмы.

1. Диагонали куба пересекаются в точке, являющейся центром вписанной и описанной сфер.

2. Радиус описанной около куба сферы равен .

3. Радиус вписанной в куб сферы равен .

Задачи

1. Диагональ куба равна . Найдите его объем.

2. Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 30. Найдите ребро куба.

3.В куб с ребром 6 вписан шар. Найдите объем шара, деленный на .

Ответ: 36.

4 . Диагональ куба равна . Найдите его объем.

Ответ: 27.

5. Диагональ грани куба равна . Найдите его объем.

6.Если каждое ребро куба увеличить на 1, то его объем увеличится на 19. Найдите ребро куба.

7. Во сколько раз увеличится объем куба, если его ребра увеличить в три раза?

Ответ: 27.

8. Диагональ куба равна 1. Найдите площадь его поверхности.

9. Площадь поверхности куба равна 8. Найдите его диагональ.

10. Диагональ грани куба равна 3. Найдите площадь его поверхности.

Ответ: 27.

11. Площадь поверхности куба равна 48. Найдите диагональ грани куба.

12. Диагональ куба равна . Найдите его объем.

Ответ: 27.

13. Площадь поверхности куба равна 24. Найдите его объем.

14. Во сколько раз увеличится площадь поверхности куба, если его ребро увеличить в три раза?

15. Объем куба равен 27. Найдите площадь его поверхности.

Ответ: 54.

16. Объем куба равен 12. Найдите объем треугольной пирамиды, отсекаемой от него плоскостью, проходящей через середины двух ребер, выходящих из одной вершины и параллельной третьему ребру, выходящему из этой же вершины.

Ответ: 1,5.

Прямоугольный параллелепипед

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

Противоположные грани прямоугольного параллелепипеда – равные прямоугольники.

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерении .

Задачи

1. Диагональ прямоугольного параллелепипеда равна и образует углы 30о, 45о и 60о с плоскостями граней параллелепипеда. Найдите объем параллелепипеда.

Ответ: 4,5.

2. Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 2. Найдите объем параллелепипеда.

3. Найдите объем многогранника, изображенного на рисунке, все двугранные углы которого равны 90о.

Ответ: 7.

4. Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру.

Ответ: 8.

5. Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани.

Ответ: 5.

6. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите объем параллелепипеда.

Ответ: 32.

7. Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3, 4, 5. Найдите площадь его поверхности.

Ответ: 94.

8. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 52. Найдите третье ребро, выходящее из той же вершины.

Ответ: 2.

9. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите площадь поверхности параллелепипеда.

10. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.

11. Прямоугольный параллелепипед описан около сферы радиуса 2. Найдите площадь его поверхности.

Ответ: 96.

12. Прямоугольный параллелепипед описан около сферы радиуса 2. Найдите его объем.

13. Объем прямоугольного параллелепипеда, описанного около сферы, равен 216. Найдите радиус сферы.

Ответ: 3.

14. Площадь поверхности прямоугольного параллелепипеда, описанного около сферы, равна 96. Найдите радиус сферы.

Ответ: 2.

15. Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда.

Ответ: 48.

16. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины.

Ответ: 4.

17. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36. Найдите его диагональ.

Ответ: 7.

Призма

призма
прямая призма

Многогранник, две грани которого равные многоугольники, лежащие в параллельных плоскостях, а остальные грани параллелограммы, называется призмой.

Равные многоугольники, лежащие в параллельных плоскостях, называются основаниями призмы. Остальные грани называются боковыми гранями. Они образуют боковую поверхность призмы. Различают ребра при основании и боковые ребра призмы (L).

Призма называется прямой, если боковые ребра перпендикулярны основаниям призмы.

Перпендикуляр, опущенный из любой токи верхнего основания на нижнее основание, называется высотой призмы (Н).

Название призмы зависит от многоугольника, лежащего в основании призмы.

Полная поверхность призмы равна сумме площадей двух оснований и площади боковой поверхности.

Боковая поверхность призмы равна произведению периметра основания на высоту призмы.

(Или, произведению периметра перпендикулярного сечения на боковое ребро призмы ).

Объем призмы равен произведению площади основания на высоту призмы.

(Или, произведению площади перпендикулярного сечения на боковое ребро призмы ).

Призма, в основании которой лежит параллелограмм, называется параллелепипедом.

Все противоположные грани параллелепипеда равны и параллельны. Диагонали параллелепипеда пересекаются в одной точке и делятся в ней пополам. Точка пересечения диагоналей является центром симметрии параллелепипеда.

Параллелепипед, все грани которого прямоугольники, называется прямоугольным параллелепипедом.

Прямоугольный параллелепипед с равными ребрами называется кубом.

Прямая призма (треугольная правильная)

Призма, у которой боковые ребра перпендикулярны основаниям, а основания – правильные треугольники.

1. Боковые грани – равные прямоугольники

2. Сторона основания

Задачи

1. Найдите объем правильной треугольной призмы, все ребра которой равны .

Ответ: 2,25.

2. Объем правильной треугольной призмы равен 6. Каким будет объем призмы, если стороны ее основания увеличить в три раза, а высоту уменьшить в два раза?

3. Площадь поверхности правильной треугольной призмы равна 6. Какой будет площадь поверхности призмы, если все ее ребра увеличить в три раза?

4. В сосуд, имеющий форму правильной треугольной призмы, налили 2300 см3 воды и погрузили в воду деталь. При этом уровень воды поднялся с отметки 25 см до отметки 27 см.

Найдите объем детали. Ответ выразите в см3.

5.В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 80 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 4 раза больше, чем у первого? Ответ выразите в см.

Правильная треугольная призма - призма, в основаниях которой лежат два правильных треугольника, а все боковые грани строго перпендикулярны этим основаниям.

Обозначения

  • $ABCA_1B_1C_1$ - правильная треугольная призма
  • $a$ - длина стороны основания призмы
  • $h$ - длина бокового ребра призмы
  • $S_{\text{осн.}}$ - площадь основания призмы
  • $V_{\text{призмы}}$ - объем призмы

Площадь оснований призмы

В основании правильной треугольной призмы лежит правильный треугольник со стороной $a$. По свойствам правильного треугольника $$ S_{\text{осн.}}=\frac{\sqrt{3}}{4}\cdot a^2 $$ Таким образом, получается, что $S_{ABC}=S_{A_1B_1C_1}=\frac{\sqrt{3}}{4}\cdot a^2$.

Объем призмы

Объем призмы вычисляется как произведение площади ее основания на ее высоту. Высотой правильной призмы является любое из ее боковых ребер, например, ребро $AA_1$. В основании правильной треугольной призмы находится правильный треугольник, площадь которого нам известна. Получаем $$ V_{\text{призмы}}=S_{\text{осн.}}\cdot AA_1=\frac{\sqrt{3}}{4}\cdot a^2 \cdot h $$

Находим BD

BD является высотой правильного треугольника со стороной $a$, лежащего в основании призмы. По свойствам правильного треугольника $$ BD=\frac{\sqrt{3}}{2}\cdot a $$ Аналогичным образом, приходим к заключению, что длины всех остальных диагоналей оснований призмы равны $\frac{\sqrt{3}}{2}\cdot a$.

Находим $BD_1$

В треугольнике $DBD_1$:
  • $DB=\frac{\sqrt{3}}{2}\cdot a$ - как мы только что выяснили
  • $DD_1=h$
  • $\angle BDD_1=90^{\circ}$ - потому что прямая $DD_1$ перпендикулярна плоскости $ABC$
Таким образом, получается, что треугольник $DBD_1$ прямоугольный. По свойствам прямоугольного треугольника $$ BD_1=\sqrt{h^2+\frac{3}{4}\cdot a^2} $$ Если $h=a$, то тогда $$ BD_1=\frac{\sqrt{7}}{2}\cdot a $$

Находим $BC_1$

В треугольнике $CBC_1$:
  • $CB=a$
  • $CC_1=h$
  • $\angle BCC_1=90^{\circ}$ - потому что прямая $CC_1$ перпендикулярна плоскости $ABC$
Таким образом, получается, что треугольник $CBC_1$ прямоугольный. По свойствам прямоугольного треугольника $$ BC_1=\sqrt{h^2+a^2} $$ Если $h=a$, то тогда $$ BC_1=\sqrt{2}\cdot a $$ Аналогичным образом, приходим к заключению, что длины всех остальных диагоналей боковых граней призмы равны $\sqrt{h^2+a^2}$. Примечание . Здесь находятся задачи о призмах с правильным треугольником в основании. Если Вы не нашли решение интересующей Вас задачи, пишите об этом на форуме .

Задача

Найти площадь правильной треугольной призмы , сторона основания которой 6 см, а высота - 10 см.

Решение .
Площадь правильного треугольника в основании призмы находится по формуле:

Принимаем во внимание первую формулу.

По условию задачи a = 6 см откуда S = √3 / 4 * 36 = 9√3

Поскольку у правильной треугольной призмы оснований два, то площадь оснований будет равна
9√3 * 2 = 18√3

Площадь каждой из граней будет равна 6 * 10 = 60, а поскольку граней три, то 60 * 3 = 180

Таким образом, площадь полной поверхности призмы будет равна 180 + 18√3 ≈ 211, 18 см кв.

Ответ : 180 + 18√3 ≈ 211,18

Задача

Сторона основания правильной треугольной призмы равна а , боковая поверхность равновелика сумме оснований. Найти объем призмы .

Решение .

Поскольку призма треугольная, то боковых грани три, таким образом, площадь боковой поверхности можно найти по Формуле 1

Оснований у призмы два, поэтому их площадь равна двум площадям равностороннего треугольника со стороной а. Формула 2

По условию задачи они равны (Формула 3)

Выразим из получившегося равенства высоту призмы (Формула 4)

Подставим получившееся выражение в формулу объема призмы и найдем ответ (Формула 5)

Сторона основи правильної трикутної призми дорівнює а , бічна поверхня рівновелика сумі підстав. Знайти об"єм призми .

Рiшення .

Оскільки призма трикутна, то бічних грані три, таким чином, площу бічної поверхні можна знайти по Формулі 1

Основ в призми двi, тому їх площа дорівнює двом площам рівностороннього трикутника із стороною а. Формула 2

По умові завдання вони рівні (Формула 3)

Виразимо з рівності, що вийшла, висоту призми (Формула 4)

Підставимо вираження, що вийшло, у формулу об"єму призми і знайдемо відповідь (Формула 5)



Школьникам, которые готовятся к сдаче ЕГЭ по математике, обязательно стоит научиться решать задачи на нахождение площади прямой и правильной призмы. Многолетняя практика подтверждает тот факт, что подобные задания по геометрии многие учащиеся считают достаточно сложными.

При этом уметь находить площадь и объем правильной и прямой призмы должны старшеклассники с любым уровнем подготовки. Только в этом случае они смогут рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

Основные моменты, которые стоит запомнить

  • Если боковые ребра призмы перпендикулярны основанию, она называется прямой. Все боковые грани этой фигуры являются прямоугольниками. Высота прямой призмы совпадает с ее ребром.
  • Правильной является призма, боковые ребра которой перпендикулярны основанию, в котором находится правильный многоугольник. Боковые грани этой фигуры - равные прямоугольники. Правильная призма всегда является прямой.

Подготовка к единому госэкзамену вместе со «Школково» - залог вашего успеха!

Чтобы занятия проходили легко и максимально эффективно, выбирайте наш математический портал. Здесь представлен весь необходимый материал, который поможет подготовиться к прохождению аттестационного испытания.

Специалисты образовательного проекта «Школково» предлагают пойти от простого к сложному: сначала мы даем теорию, основные формулы, теоремы и элементарные задачи с решением, а затем постепенно переходим к заданиям экспертного уровня.

Базовая информация систематизирована и понятно изложена в разделе «Теоретическая справка». Если вы уже успели повторить необходимый материал, рекомендуем вам попрактиковаться в решении задач на нахождение площади и объема прямой призмы. В разделе «Каталог» представлена большая подборка упражнений различной степени сложности.

Попробуйте рассчитать площадь прямой и правильной призмы или прямо сейчас. Разберите любое задание. Если оно не вызвало сложностей, можете смело переходить к упражнениям экспертного уровня. А если определенные трудности все же возникли, рекомендуем вам регулярно готовиться к ЕГЭ в онлайн-режиме вместе с математическим порталом «Школково», и задачи по теме «Прямая и правильная призма» будут даваться вам легко.