Атомное наследие Сталина. Атомное оружие Какой период полураспада урана 235

Двадцатый век дал в руки Человечеству столько открытий! Для многих из них целью было облегчить жизнь высшему существу на планете Земля, но реальность как всегда обманчива и человеческий эгоизм порой превосходит простые понятия о добре и зле. Эгоизм не дает уснуть чувству превосходства, власти над миром, и самые великие открытия становятся на путь уничтожения. Начальным этапом открытия деления самого разрушительного вещества на Земле стало бурное развитие промышленности, которой требовались огромные объемы энергии - и эту энергию нашли! Немецкие ученые Отто Ган и Фриц Штрассман открыли поразительное явление: деление ядра урана (U) при бомбардировке его нейтронами (n), при этом в процессе деления высвобождалось огромное количество энергии на один атом вещества (порядка 202,5 МэВ = 3,24*10-11 Дж), а также еще 2-3 нейтрона, которые взаимодействовали с соседними ядрами. Но использовать такое топливо не предоставлялось возможным - реакция в образце урана по невыясненным причинам быстро затухала. Позже было выяснено, что на ход реакции отрицательно влияет один из изотопов, а именно уран 238, который при поглощении нейтрона (n) не испускает в процессе деления новые нейтроны. Однако изотоп урана 235 имеет способность к размножению.
Большим открытием был процесс спонтанного деления ядра урана 235. В 1 грамме металла в час происходит порядка 20 спонтанных делений, но цепная реакция не происходит, а почему? Ответ на этот вопрос достаточно банален - нейтроны промахиваются в достаточно малом объеме вещества и выходят из металла без взаимодействия. Путем расчетов была выяснена минимальная масса образца урана 235, которая составила порядка 48 килограммов. В таком образце - шаре диаметром 25 см реакция не должна была затухать. Но как выделить изотоп урана 235? Попробуем ответить на этот вопрос.
Природный уран представляет собой металл серебристого цвета, легко поддающийся механической обработке, температура плавления составляет 1130 градусов Цельсия. Уран хорошо окисляется на воздухе и воспламеняется в атмосфере при температуре 100 градусов Цельсия, очень ядовит, является источником жесткого альфа- и бета-излучения. Природный уран состоит из нескольких изотопов :
Уран 235 - 0,7184%;
Уран 238 - 99,2760%;
Уран 234 - 0,0056%.
Для промышленного применения пригоден только изотоп с массовым номером 235, остальные являются «мусором». Выделить нужный изотоп не так уж легко: основным способом получения обогащенного урана 235 является прокачка фторида урана через систему центрифуг, в которых более тяжелый изотоп оседает на стенках, а 235-й проходит. Таким способом можно получить обогащение вплоть до 99%.
Промышленный уран 235 в основном применяется в качестве топлива для электростанций, но первоначально этот металл использовался в военных целях как самое мощное на Земле взрывчатое вещество. Последствия военного применения урана 235 внесли большой вклад именно в мирное освоение энергии атомного ядра. Энергия, выделяемая 1 граммом урана, сопоставима со сжиганием 2,5 тонн нефти. Выгода очевидна - применение металла в качестве топлива позволяет сократить добычу полезных ископаемых и перейти на уровень «чистой энергетики», при условии проектирования надежных аварийных систем работы реактора и качественном исполнении самого реактора. Реактор - основная часть АЭС (атомной электростанции), в нем непосредственно происходит процесс деления ядер вещества и передача энергии теплоносителю. Теплоносителю передает энергию турбине, которая, в свою очередь, вырабатывает электрическую энергию. Теплоносителем могут быть различные вещества с высокой теплоемкостью: вода, инертные газы, жидкие щелочные металлы.
В настоящее время энергия урана 235 используется для производства электрической энергии, но запасы металла на Земле ограничены и по подсчетам ученых их хватит лишь на 50 лет интенсивного использования. И именно в наших интересах экономить электрическую энергию, столь сложно достающуюся нам от Природы!

Уран, элемент с порядковым номером 92, самый тяжелый из встречающихся в природе. Использовался он еще в начале нашей эры, осколки керамики с желтой глазурью (содержащие более 1% оксида урана) находились среди развалин Помпеи и Геркуланума.

Уран был открыт в 1789 году в урановой смолке немецким химиком Мартоном Генрихом Клапротом, назвавшего его в честь планеты уран, открытой в 1781. Впервые получил металлический уран французский химик Юджин Пелиго в 1841, восстановив безводный тетрахлорид урана калием. В 1896 году Антуан-Анри Беккерель открывает явление радиоактивности урана случайным засвечиванием фотопластинок ионизирующим излучением от оказавшегося поблизости кусочка соли урана.

Физические и химические свойства

Уран очень тяжелый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667.7 °C), бета (четырехугольная, стабильна от 667.7 до 774.8 °C), гамма (с объемно центрированной кубической структурой, существующей от 774.8 °C до точки плавления), в которых уран наиболее податлив и удобен для обработки. Альфа-фаза - очень примечательный тип призматической структуры, состоящей из волнистых слоев атомов в чрезвычайно асимметричной призматической решетке. Такая анизотропная структура затрудняет сплав урана с другими металлами. Только молибден и ниобий могут создавать с ураном твердофазные сплавы. Правда, металлический уран может вступать во взаимодействие со многими сплавами, образуя интерметаллические соеденинения.

Основные физические свойства урана:
температура плавления 1132.2 °C (+/- 0.8);
температура кипения 3818 °C;
плотность 18.95 (в альфа-фазе);
удельная теплоемкость 6.65 кал/моль/°C (25 C);
прочность на разрыв 450 МПа.

Химически уран очень активный металл. Быстро окисляясь на воздухе, он покрывается радужной пленкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре 150-175 °C, образуя U 3 O 8 . При 1000 °C уран соединяется с азотом, образуя желтый нитрид урана. Вода способна разъедать металл, медленно при низкой температуре, и быстро при высокой. Уран растворяется в соляной, азотной и других кислотах, образуя четырехвалентные соли, зато не взаимодействует с щелочами. Уран вытесняет водород из неорганических кислот и солевых растворов таких металлов как ртуть, серебро, медь, олово, платина и золото. При сильном встряхивании металлические частицы урана начинают светиться.
Уран имеет четыре степени окисления - III-VI. Шестивалентные соединения включают в себя триокись уранила UO
3 и уранилхлорид урана UO 2 Cl 2 . Тетрахлорид урана UCl 4 и диоксид урана UO 2 - примеры четырехвалентного урана. Вещества, содержащие четырехвалентный уран обычно нестабильны и обращаются в шестивалентные при длительном пребывании на воздухе. Ураниловые соли, такие как уранилхлорид распадаются в присутствии яркого света или органики.

Уран стабильных изотопов не имеет, но известно 33 его радиоактивных изотопа. Природный уран состоит из трёх радиоактивных изотопов: 238 U (99,2739%, T=4.47⋅10 9 лет, α-излучатель, родоначальник радиоактивного ряда (4n+2)), 235 U (0.7205%, T=7,04⋅10 9 лет, родоначальник радиоактивного ряда (4n+3)) и 234 U (0.0056%, T=2.48⋅10 5 лет, α-излучатель). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238 U. Атомная масса природного урана 238,0289+0,0001.

Радиоактивность природного урана обусловлена в основном изотопами 238 U и 234 U, в равновесии их удельные активности равны. Удельная радиоактивность природного урана 0.67 микрокюри/г, разделяется практически пополам между 234 U и 238 U; 235 U вносит малый вклад (удельная активность изотопа 235 U в природном уране в 21 раз меньше активности 238 U). Природный уран достаточно радиоактивен для засвечивания фотопластинки за время около часа. Поперечное сечение захвата тепловых нейтронов 233 U 4,6·10 -27 м2, 235 U 9,8 10 -27 м2, 238 U 2,7 10 -28 м2; сечение деления 233 U 5,27·10 -26 м2, 235 U 5,84·10 -26 м2, природной смеси изотопов 4,2·10 -28 м2.

Изотопы урана, как правило, α-излучатели. Средняя энергия α-излучения 230 U, 231 U, 232 U, 233 U, 234 U, 235 U, 236 U, 238 U равна соответственно 5,97; 3,05⋅10 -4 ; 5,414; 4,909; 4,859; 4,679; 4,572; 4,270 МэВ. В тоже время такие изотопы, как 233 U, 238 U и 239 U помимо альфа- испытывают и другой тип распада – спонтанное деление, хотя вероятность деления намного меньше вероятности α-распада.

С точки зрения практических приложений важно, что природные изотопы 233 U и 235 U делятся под действием как тепловых, так и быстрых нейтронов ( 235 U способен к спонтанному делению), а ядра 238 U способны к делению только при захвате нейтронов с энергией более 1 МэВ. При захвате нейтронов с меньшей энергией ядра 238 U превращаются сначала в ядра 239 U, которые далее испытывают β-распад и переходят сначала в 239 Np, а затем - в 239 Pu, ядерные свойства которого близки к 235 U. Эффективные сечения захвата тепловых нейтронов ядер 234 U, 235 U и 238 U равны 98⋅10 -28 , 683⋅10 -28 и 2,7⋅10 -28 м2 соответственно. Полное деление 235 U приводит к выделению «теплового энергетического эквивалента» 2⋅10 7 кВт.ч/кг.


Техногенные изотопы урана


В современных атомных реакторах нарабатываются 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240, из которых самый долгоживущий – 233 U (T = 1,62·10 5 лет); он получается при нейтронном облучении тория. Изотопы урана с массовым числом больше 240 в реакторах не успевают образоваться. Слишком мало времени жизни урана-240, и он распадается, не успев захватить нейтрон. Однако, в сверхмощных нейтронных потоках термоядерного взрыва ядро урана за миллионную долю секунды успевает захватить до 19 нейтронов. При этом рождаются изотопы урана с массовыми числами от 239 до 257. Об их существовании узнали по появлению в продуктах термоядерного взрыва далеких трансурановых элементов – потомков тяжёлых изотопов урана. Сами «основатели рода» слишком неустойчивы к β-распаду и переходят в высшие элементы задолго до извлечения продуктов ядерных реакций из перемешанной взрывом породы.

В энергетических реакторах на тепловых нейтронах качестве ядерного топлива используют изотопы 235 U и 233 U, а в реакторах на быстрых нейтронах 238 U, т.е. изотопы, способные поддерживать цепную реакцию деления.


U-232


232 U – техногенный нуклид, в природе не встречается, α-излучатель, Т=68,9 лет, материнские изотопы 236 Pu(α), 232 Np(β+) и 232 Pa(β-), дочерний нуклид 228 Тh. Способен к спонтанному делению. 232 U имеет интенсивность спонтанного деления 0.47 делений/с⋅кг. В ядерной индустрии 232 U нарабатывается как побочный продукт при синтезе делящегося (оружейного) нуклида 233U в ториевом топливном цикле. При облучении 232 Th происходит основная реакция:


232 Th + n → 233 Th → (22.2 мин, β--распад) → 233 Pa → (27.0 дней, β--распад) → 233 U


и побочная двухстадийная реакция:


232 Th + n → 231 Th + 2n, 231 Th → (25.5 ч, β) → 231 Pa + n → 232 Pa → (1.31 дней, β) → 232 U.


Наработка 232 U в ходе двухстадийной реакции зависит от присутствия быстрых нейтронов (нужны нейтроны с энергией не менее 6 МэВ), ибо сечение первой реакции мало для тепловых скоростей. Энергиями более 6 МэВ обладает небольшое число нейтронов деления и если зона воспроизводства тория находится в такой части реактора, где она облучается умеренно быстрыми нейтронами (~ 500 кэВ) то эта реакция может быть практически исключена. Если в исходном веществе находится 230 Th, то образование 232 U дополняется реакцией: 230 Th + n → 231 Th и далее как указано выше. Эта реакция превосходно идет и с тепловыми нейтронами. Поэтому подавление образования 232 U (а это нужно по указанным ниже причинам) требует загрузки тория с минимальной концентрацией 230 Th.

Образующийся в энергетическом реакторе изотоп 232 U представляет проблему для охраны труда, поскольку он распадается на 212 Bi и 208 Te, которые излучают γ-кванты высоких энергий. Поэтому препараты, содержащие большое количество этого изотопа следует перерабатывать в горячей камере. Наличие 232 U в облучённом уране опасно и с точки зрения обращения с атомным оружием.

Накопление 232 U неизбежно при производстве 233 U в ториевом энергетическом цикле, что сдерживает внедрение его в энергетику. Необычным является то, что чётный изотоп 232 U имеет высокое сечение деления под действием нейтронов (для тепловых нейтронов 75 барн, резонансный интеграл 380), а также высокое сечение захвата нейтронов – 73 барна (резонансный интеграл 280).

Есть и польза от 232 U: он часто применяется в методе радиоактивных индикаторов в химических и физических исследованиях.


U-233



233 U открыт Сиборгом, Гофманом и Стоутоном. Уран-233 - α-излучатель, Т=1,585⋅105 лет, материнские нуклиды 237 Pu(α) 233 Np(β+) 233 Pa(β-), дочерний нуклид 229 Th. Уран-233 получается в атомных реакторах из тория: 232Th захватывает нейтрон и превращается в 233 Th, который распадается на 233 Ра, а затем в 233 U. Ядра 233 U (нечётный изотоп) способны как к спонтанному делению, так и к делению под действием нейтронов любых энергий, что делает его пригодным к производству как атомного оружия, так и реакторного топлива (возможно расширенное воспроизводство ядерного горючего). Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей. Эффективное сечение деления быстрыми нейтронами 533 барн, период полураспада 1585000 лет, в природе не встречается. Критическая масса 233 U в три раза меньше критической массы 235 U (около 16 кг). 233 U имеет интенсивность спонтанного деления равную 720 делений/с⋅кг. 235U можно получить из 232Th, облучением нейтронами:


232 Th + n → 233 Th → (22.2 мин, β--распад) → 233 Pa → (27.0 дней, β--распад) → 233U


При поглощении нейтрона, ядро 233 U обычно делится, но изредка захватывает нейтрон, переходя в 234 U, хотя доля процессов неделения меньше, чем в других делящихся топлив ( 235 U, 239 Pu, 241 Pu) она остаётся малой при всех энергиях нейтронов. Отметим, что существует проект реактора на основе расплава солей, в котором протактиний физически изолируют, прежде чем он успеет поглотить нейтрон. Хотя 233 U, поглотив нейтрон, обычно делится, всё же он иногда сохраняет нейтрон, переходя в 234 U (этот процесс существенно менее вероятен, чем деление).

Наработка 233 U из сырья для ториевой промышленности - долгосрочная стратегия развития ядерной индустрии Индии, имеющей существенные запасы тория. Бридинг можно осуществить или в быстрых или в тепловых реакторах. Вне Индии, интерес к топливному циклу на основе тория не слишком велик, хотя мировые запасы тория в три раза превосходят запасы урана.Помимо топлива в атомных реакторах, можно использовать 233 U в оружейном заряде. Хотя сейчас это делают редко. В 1955 США проверили оружейные качества 233 U, взорвав бомбу на его основе в операции Teapot (заварной чайник). С оружейной точки зрения 233 U, сравним с 239 Pu: его радиоактивность – 1/7 (Т=159200 лет против 24100 лет у плутония), его критическая масса на 60% выше (16 кг против 10 кг), а скорость спонтанного деления выше в 20 раз (6⋅10 -9 против 3⋅10 -10 ). Однако, но так как его удельная радиоактивность ниже, то нейтронная плотность 233 U в три раза выше, чем у 239 Pu. Создание ядерного заряда на основе 233 U требует больших усилий, чем на плутонии, но технологические усилия примерно те же.

Основное различие – наличие в 233 U примеси 232 U, которая затрудняет работы с 233 U и позволяет легко обнаружить готовое оружие.

Содержание 232 U в оружейном 233 U не должно превышать 5 частей на миллион (0.0005%). В коммерческом ядерном топливном цикле наличие 232 U не представляет собой большого недостатка, даже желательно, поскольку это снижает возможность распространения урана для оружейных целей. Для экономии топлива, после его переработки и повторного использования уровень 232 U достигает 0.1-0.2%. В специально спроектированных системах этот изотоп накапливается в концентрациях 0.5-1%.

В течение первых двух лет после производства 233 U, содержащего 232 U, 228 Th сохраняется на постоянном уровне, находясь в равновесии с собственным распадом. В этом периоде фоновое значение γ-излучения устанавливается и стабилизируется. Поэтому первые несколько лет произведенная масса 233 U испускает значительное γ-излучение. Десятикилограммовая сфера 233 U оружейной чистоты (5 миллионных долей 232U) создает фон 11 миллибэр/час на расстоянии 1 м спустя 1 месяц после производства, 110

миллибэр/ч через год, 200 миллибэр/ч через 2 года. Ежегодная предельная доза в 5 бэр превышается уже через 25 часов работы с таким материалом. Даже свежий 233 U (1 месяц со дня изготовления) ограничивает время сборки десятью часами в неделю. В полностью собранном оружии уровень радиации снижают поглощением корпусом заряда. В современных облегченных устройствах снижение не превышает 10 раз, создавая проблемы с безопасностью. В более тяжеловесных зарядах поглощение более сильное - в 100 - 1000 раз. Рефлектор из бериллия увеличивает уровень нейтронного фона: 9Be + γ-квант → 8Be + n. γ-лучи 232 U образуют характерную сигнатуру, их можно обнаружить и отследить передвижения и наличие атомного заряда. Нарабатываемый по ториевому циклу специально денатурированный 233 U (0.5 - 1.0% 232 U), создает ещё большую опасность. 10-килограмовая сфера, изготовленная из такого материала, на расстоянии 1 м через 1 месяц создает фон 11 бэр/час, 110 бэр/ч через год и 200 бэр/ч через 2 года. Контакт с такой атомной бомбой, даже при сокращении излучения в 1000 раз, ограничивается 25 часами в год. Наличие заметной доли 232 U в делящемся веществе делает его крайне неудобным для военного применения.


Природные изотопы урана


U-234


Уран-234 (уран II) входит в состав природного урана (0,0055%), Т=2,445⋅10 5 лет, α-излучатель, материнские радионуклиды: 238 Pu(α), 234 Pa(β-), 234 Np(β+), дочерний изотоп в 230 Th. Содержание 234 U в руде очень незначительно из-за его сравнительно короткого периода полураспада. 234 U образуется по реакциям:


238 U → (4.51 миллиарда лет, альфа-распад) → 234 Th

234 Th → (24.1 дней, бета-распад) → 234 Pa

234 Pa → (6.75 часов, бета-распад) → 234 U


Обычно 234 U находится в равновесии с 238 U, распадаясь и образуясь с одинаковой скоростью. Однако распадающиеся атомы 238 U существуют некоторое время в виде тория и протактиния, поэтому могут химически или физически отделиться от руды (выщелачиваться подземными водами). Поскольку 234 U обладает относительно коротким временем полураспада, весь этот изотоп, находящийся в руде, образовался в последние несколько миллионов лет. Примерно половину радиоактивности природного урана составляет вклад 234 U.

Концентрация 234 U в высокообогащённом уране довольно высока из-за предпочтительного обогащения легкими изотопами. Поскольку 234 U является сильным γ-излучателем, имеются ограничения на его концентрацию в уране, предназначенном для переработки в топливо. В принципе, повышенный уровень 234 U приемлем для современных реакторов, но подвергнутое переработке отработанное топливо содержит уже неприемлемые уровни этого изотопа.

Сечение поглощения 234 U тепловых нейтронов 100 барн, а для резонансного интеграла, усреднённого по различным промежуточным нейтронам 700 барн. Поэтому в реакторах на

тепловых нейтронах он конвертируется в делящийся 235 U с большей скоростью, чем намного большее количество 238 U (с поперечным сечением 2,7 барн) конвертируется в 239 Pu. В результате, отработанное ядерное топливо содержит меньше 234 U, чем свежее.


U-235


Уран-235 (актиноуран) – изотоп, способный давать быстроразвивающуюся цепную реакцию деления. Открыт Демпстером (Arthur Jeffrey Dempster) в 1935.

Это – первый изотоп, на котором была открыта реакция вынужденного деления ядер под действием нейтронов. Поглощая нейтрон, 235 U переходит в 236 U, который делится на две части, выделяя энергию и испуская несколько нейтронов. Делящийся нейтронами любых энергий, способный к самопроизвольному делению, изотоп 235 U входит в состав природного урана (0,72%), α-излучатель (энергия 4.679 МэВ), Т=7,038⋅10 8 лет, материнские нуклиды 235 Pa, 235 Np и 239 Pu, дочерний - 231 Th. Интенсивность спонтанного деления 235 U 0.16 делений/с⋅кг. При делении одного ядра 235 U выделяется 200 МэВ энергии=3,2⋅10 -11 Дж, т.е. 18 ТДж/моль=77 ТДж/кг. Однако 5% этой энергии уносится виртуально недектируемыми нейтронами. Ядерное сечение тепловыми нейтронами составляет примерно 1000 барн, а быстрыми нейтронами – около 1 барна.

Чистая 60-килограмовая масса 235 U производит всего 9.6 делений/с, делая достаточно простой для изготовления атомной бомбы по пушечной схеме. 238 U создает в 35 раз больше нейтронов на килограмм, так что даже маленький процент этого изотопа поднимает этот показатель в несколько раз. 234 U создает в 22 раза больше нейтронов и имеет похожее с 238 U нежелательное действие. Удельная активность 235 U всего 2.1 микрокюри/г; загрязнение его 0.8% 234 U поднимают ее до 51 микрокюри/г. Критическая масса оружейного урана. (93,5% 235 U) в водных растворах составляет менее 1 кг, для открытого шара – около 50 кг, для шара с отражателем – 15 – 23 кг.

В природном уране только один, относительно редкий, изотоп подходит для изготовления ядра атомной бомбы или поддержания реакции в энергетическом реакторе. Степень обогащения по 235 U в ядерном топливе для АЭС колеблется в пределах 2-4.5%, для оружейного использования - минимум 80%, а более предпочтительно 90%. В США 235 U оружейного качества обогащен до 93.5% (промышленность способна выдать 97.65%). Такой уран используется в реакторах для военно-морского флота.

Замечание . Уран с содержанием 235 U более 85% называется оружейным ураном, с содержанием более 20% и менее 85% - ураном, годным к оружейному применению, поскольку из него можно приготовить «плохую» (неэффективную бомбу). Но из него можно изготовить и «хорошую» бомбу, если применить имплозию, нейтронные отражатели и некоторые дополненные ухищрения. К счастью, реализовать такие ухищрения на практике пока могут только 2-3 страны в мире. Сейчас, бомбы из урана, по-видимому, нигде не производятся (плутоний вытеснил уран из ядерного оружия), но перспективы урана-235 сохраняются благодаря простоте пушечной схемы урановой бомбы и возможности расширенного производства таких бомб при неожиданно возникшей необходимости.

Будучи более легким, 234 U пропорционально обогащается даже ещё в большей степени, чем 235 U во всех процессах разделения природных изотопов урана, основанных на разнице в массах, что представляет определённую проблему при производстве зарядов атомных бомб. Высокообогащенный 235 U обычно содержит 1.5-2.0% 234 U.

Деление 235 U используется в атомном оружии, для производства энергии и для синтеза важных актинидов. Уран природного состава используется в ядерных реакторах для производства нейтронов. Цепная реакция поддерживается благодаря избытку нейтронов, образующихся при делении 235 U, в то же время избыточные нейтроны, невостребованные цепной реакцией, захватываются другим природным изотопом, 238 U, что приводит к получению плутония, также способного делиться под действием нейтронов.


U-236


Встречается в природе в примесных количествах, α-излучатель, Т=2,3415⋅10 7 лет, распадается на 232 Th. Образуется при бомбардировке нейтронами 235 U, затем делится на изотоп бария и изотоп криптона с выделением двух нейтронов, гамма-лучей и высвобождением энергии.

В незначительных количествах входит в состав свежего топлива; накапливается при облучении урана нейтронами в реакторе, и потому используется как «сигнализатор» отработанного уранового ядерного топлива. 236 U образуется как побочный продукт при сепарации изотопов методом газовой диффузии в случае регенерации использованного ядерного горючего. Этот изотоп имеет определённое значение как материал для мишени в ядерных реакторах. При использовании рециклированного (переработанного) урана в атомном реакторе возникает важное отличие по сравнению с использованием природного урана. Выделенный из ОЯТ уран содержит изотоп 236 U (0,5%), который при его использовании в свежем топливе стимулирует наработку изотопа 238 Pu. Это приводит к ухудшению качества энергетического плутония, но может быть положительным фактором в контексте проблемы ядерного нераспространения.

Образующийся в энергетическом реакторе 236 U - нейтронный яд, его присутствие в ядерном топливе приходится компенсировать более высоким уровнем обогащения 235 U.


U-238


Уран-238 (уран I) - делящийся нейтронами высоких энергий (более 1 МэВ), способный к самопроизвольному делению, составляет основу природного урана (99,27%), α-излучатель, Т=4,468⋅10 9 лет, непосредственно распадается на 234 Th, образует ряд генетически связных радионуклидов, и через 18 продуктов превращается в 206 Pb. Постоянная скорость распада ряда даёт возможность использования отношения концентраций материнского нуклида к дочернему в радиометрическом датировании. Период полураспада урана-238 по спонтанному делению точно не установлен, но он очень большой – порядка 10 16 лет, так что вероятность деления по отношению к основному процессу - испусканию альфа-частицы - составляет всего 10 -7 . Один килограмм урана дает всего 10 спонтанных делений в секунду, а за это же время α-частицы излучают 20 миллионов ядер. Материнские нуклиды: 242 Pu(α), 238 Pa(β-) 234 Th, дочерний - 234 Th.

Хотя уран-238 не может быть использован как первичный делящийся материал, из-за высокой энергии нейтронов, необходимых для его деления, он занимает важное место в ядерной отрасли. Имея высокую плотность и атомный вес, 238 U пригоден для изготовления из него оболочек заряда/рефлектора в атомной и водородной бомбах. Тот факт, что он делится быстрыми нейтронами, увеличивает энерговыход заряда: косвенно, размножением отраженных нейтронов или непосредственно при делении ядер оболочки заряда быстрыми нейтронами (при синтезе). Примерно 40% нейтронов, образованных при делении и все нейтроны синтеза обладают достаточными для деления 238 U энергиями. 238 U имеет интенсивность спонтанного деления в 35 раз более высокую, чем 235 U, 5.51 делений/с⋅кг. Это делает невозможным применение его в качестве оболочки заряда/рефлектора в бомбах пушечной схемы, ибо подходящая его масса (200-300 кг) создаст слишком высокий нейтронный фон. Чистый 238 U имеет удельную радиоактивность 0.333 микрокюри/г. Важная область применения этого изотопа урана - производство 239 Pu. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом 238 U нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.


Обедненный уран



После извлечения 235 U из природного урана, оставшийся материал носит название «обедненный уран», т.к. он обеднен изотопам 235 U и 234 U. Уменьшенное содержание 234 U (порядка 0,001%) снижает радиоактивность почти вдвое по сравнению с природным ураном, при этом уменьшение содержания 235 U практически не сказывается на радиоактивности обеднённого урана.

В мире практически весь обеднённый уран хранится в виде гексафторида. США располагают 560000 тонн обедненного гексафторида урана (UF6) на трех газодиффузионных обогатительных производствах, в России – сотни тысяч тонн. Обедненный уран в два раза менее радиоактивен, чем природный уран, в основном за счет удаления из него 234 U. Из-за того, что основное использование урана - производство энергии, на атомных реакторах тепловыми нейтронами, обедненный уран бесполезный продукт с низкой экономическое ценностью.

С точки зрения безопасности, общепринято переводить газообразный гексафторид обеднённого урана в оксид урана, который является твердым веществом. Оксид урана либо подлежит захоронению, как вид радиоактивных отходов, либо может быть использован в реакторах на быстрых нейтронах для наработки плутония.

Решение о способе утилизации оксида урана зависит от того, как та или иная страна рассматривает обедненный уран: как радиоактивные отходы, подлежащие захоронению, или как материал, пригодный для дальнейшего использования. Например, в США обедненный уран до недавнего времени рассматривался как сырье для дальнейшего использования. Но с 2005 года такая точка зрения начала меняться и сейчас в США возможно захоронение обедненного оксида урана. Во Франции обедненный уран не рассматривается как радиоактивные отходы, но предполагается к хранению в форме оксида урана. В России руководство Федерального агентства по атомной энергии считает отвальный гексафторид урана ценным материалом, не подлежащим захоронению. Начаты работы по созданию промышленной установки по переводу отвального гексафторида урана в оксид урана. Получаемые оксиды урана предполагается хранить длительное время для дальнейшего их использования в реакторах на быстрых нейтронах или дообогащение его 235 U с последующим сжиганием в тепловых реакторах.

Нахождение путей использования обедненного урана представляет собой большую проблему для обогатительных предприятий. В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Две важнейшие сферы использования обедненного урана: в качестве радиационной защиты и как балластной массы в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолете Боинг-747 содержится 1500 кг обедненного урана для этих целей. Обедненный уран в значительной степени применяется при бурении нефтяных скважин в виде ударных штанг (при канатном бурении), его вес погружает инструмент в скважины, наполненные буровым раствором. Этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах.

Но самое известное применение урана - в качестве сердечников для бронебойных снарядов. При определенном сплаве с другими металлами и термической обработке (сплавление с 2% Mo или 0.75% Ti, быстрая закалка разогретого до 850° металла в воде или масле, дальнейшее выдерживание при 450° 5 часов) металлический уран становиться тверже и прочнее стали (прочность на разрыв > 1600 МПа). В сочетании с большой плотностью, это делает закаленный уран чрезвычайно эффективным для пробивания брони, аналогичным по эффективности существенно более дорогому монокристаллическому вольфраму. Процесс разрушения брони сопровождается измельчением в пыль основной части урана, проникновением пыли внутрь защищенного объекта и воспламенением его там. 300 тонн обедненного урана остались на поле боя во время Бури в Пустыне (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолетов A-10, каждый снаряд содержит 272 г уранового сплава). Обедненный уран используется в танковой броне, например, танка M-1 "Абрамс" (США). -4 % по массе (2-4 ppm в зависимости от региона), в кислых изверженных породах 3,5·10 -4 %, в глинах и сланцах 3,2·10 -4 %, в основных породах 5·10 -5 %, в ультраосновных породах мантии 3·10 -7 %. Количество урана в слое литосферы толщиной 20 км оценивают в 1.3⋅10 14 т. Он входит в состав всех пород, слагающих земную кору, а также присутствует в природных водах и живых организмах. Мощных месторождений не образует. Основная масса урана содержится в кислых, с высоким содержанием кремния, породах. Наименьшая концентрация урана имеет место в ультраосновных породах, максимальная – в осадочных породах (фосфоритах и углистых сланцах). В океанах содержится 10 10 т урана. Концентрация урана в почвах варьируется в интервале 0,7 – 11 ppm (15 ppm в сельскохозяйственных почвах, удобряемыми фосфорными удобрениями), в морской воде 0,003 ррm.

В свободном виде уран в земле не встречается. Известно 100 минералов урана с содержанием U более 1%. Примерно в одной трети этих минералов уран четырёхвалентен, в остальных – шестивалентен. 15 из этих урановых минералов являются простыми оксидами или гидроксилами, 20 – комплексными титанатами и ниобатами, 14 – силикатами, 17 – фосфатами, 10 – карбонатами, 6 – сульфатами, 8 – ванадатами, 8 – арсенатами. Неопределённые формы урановых соединений встречаются в некоторых углистых сланцах морского происхождения, лигните и угле, а также в межзёрновых плёнках в изверженных породах. Промышленное значение имеют 15 минералов урана.

Главные урановые минералы в крупных рудных месторождениях представлены оксидами (урановая смолка, уранинит, коффинит), ванадатами (карнотит и тюямунит) и комплексными титанатами (браннерит и давидит). Промышленное значение имеют также титанаты, например, браннерит UTi 2 O 6 , силикаты - коффинит U 1-x (OH) 4x , танталониобаты и гидритированные фосфаты и арсенаты уранила - урановые слюдки. Уран не встречается в природе как самородный элемент. Вследствие того, что уран может находиться в нескольких стадиях окисления, он встречается в весьма разнообразной геологической обстановке.


Применение урана


В развитых странах производство урана в основном направлено на генерацию делящихся нуклидов ( 235 U и 233 U, 239 Pu) - топлива промышленных реакторов, предназначенных для наработки как оружейных нуклидов, так и компонентов ядерного оружия (атомные бомбы и снаряды стратегического и тактического назначения, нейтронные бомбы, триггеры водородных бомб и т.д.). В атомной бомбе концентрация 235 U превышает 75%. В остальных странах мира металлический уран или его соединения используются в качестве ядерного горючего в энергетических и исследовательских ядерных реакторах. Природная или малообогащённая смесь изотопов урана применяется в стационарных реакторах атомных электростанций, продукт высокой степени обогащения – в ядерных силовых установках (источниках тепловой, электрической и механической энергии, излучения или света) или в реакторах, работающих на быстрых нейтронах. В реакторах часто используют металлический уран, легированный и нелегированный. Однако в некоторых типах реакторов применяют горючее в форме твердых соединений (например, UO 2 ), а также водных соединений урана или жидкого сплава урана с другим металлом.

Основное применение урана – производство ядерного топлива для АЭС. Для ядерного реактора с водой под давлением установленной мощностью 1400 МВт требуется в год 225 тонн природного урана для изготовления 50 новых топливных элементов, которые обмениваются на соответствующее число использованных ТВЭЛов. Для загрузки данного реактора необходимо около 130 тонн ЕРР (единица работы разделения) и уровень затрат в 40 млн долл. в год. Концентрация урана-235 в топливе для атомного реактора 2–5%.

По-прежнему определённый интерес урановые руды представляют с точки зрения извлечения из них радия (содержание которого примерно 1 г в 3 т руды) и некоторых других природных радионуклидов. Урановые соединения применяются в стекольной промышленности, для окраски стёкол в красный или зелёный цвет, или придания им красивого зеленовато-жёлтого оттенка. Используют их и в производстве флуоресцентных стёкол: небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу.

До 1980-ых, естественный уран широко применяли дантисты, включая его в состав керамики, что позволяло добиться естественного цвета и вызвать оригинальную флуоресценцию зубных протезов и коронок. (Урановая челюсть делает вашу улыбку ярче!) Оригинальный патент от 1942 рекомендует содержание урана 0.1%. Впоследствии естественный уран заменили обеднённым. Это дало два преимущества – дешевле и менее радиоактивно. Уран также использовался в нитях ламп, и в кожевенной и деревообрабатывающей промышленности в составе красителей. Соли урана применяют в растворах протравы и морения шерсти и кожи. Уранилацетат и уранилформиат используются как поглощающие электроны декорирующие вещества в просвечивающей электронной микроскопии, для увеличения контраста тонких срезов биологических объектов, а также для окрашивания вирусов, клеток и макромолекул.

Уранаты типа Na 2 U 2 O 7 («желтый уранил») нашли применение в качестве пигментов для керамических глазурей и эмалей (окрашивают в цвета жёлтый, зелёный и чёрный, в зависимости от степени окисления). Na 2 U 2 O 7 используется также как жёлтая краска в живописи. Некоторые соединения урана светочувствительны. В начале ХХ века уранилнитрат широко применялся в качестве вирирующего агента для усиления негативов и получения тонированных фотографических отпечатков (окрашивание позитивов в коричневый или бурый цвет). Уранилацетат UO 2 (H 3 COOH) 2 используется в аналитической химии – он образует нерастворимую соль с натрием. Фосфорные удобрения содержат довольно большие количества урана. Металлический уран используется в качестве мишени в рентгеновской трубке, предназначенной для генерации высокоэнергетичного рентгеновского излучения.

Некоторые соли урана используются в качестве катализаторов при химических реакциях, таких, как окисление ароматических углеводородов, обезвоживание растительных масел, и др. Карбид 235 U в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело - водород + гексан). Сплавы железа и обедненного урана ( 238 U) применяются как мощные магнитострикционные материалы.

В народном хозяйстве обедненный уран используется при изготовлении самолетных противовесов и противорадиационных экранов медицинской радиотерапевтической аппаратуры. Из обедненного урана изготавливают транспортные контейнеры для перевозки радиоактивных грузов и ядерных отходов, а также изделия надежной биологической защиты (например, защитные экраны). С точки зрения поглощения γ-излучения, уран в пять раз эффективнее свинца, что позволяет существенно снизить толщину защитных экранов и уменьшить объём контейнеров, предназначенных для транспортировки радионуклидов. Бетон на основе оксида обеднённого урана используют вместо гравия для создания сухих хранилищ радиоактивных отходов.

Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234 U. Его используют для легирования броневой стали, в частности, для улучшения бронебойных характеристик снарядов. При сплавлении с 2% Mo или 0,75% Ti и термической обработке (быстрая закалка разогретого до 850°C металла в воде или масле, дальнейшее выдерживание при 450° 5 часов) металлический уран становится твёрже и прочнее стали (прочность на разрыв больше 1600 МПа, при том, что у чистого урана она равна 450 МПа). В сочетании с большой плотностью, это делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому вольфраму. Тяжёлый урановый наконечник также изменяет распределение масс в снаряде, улучшая его аэродинамическую устойчивость. При попадании в броню такой снаряд (например, сплав урана с титаном) не ломается, а как бы самозатачивается, чем и достигается большая пробиваемость. Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе внутри танка. Обеднённый уран используется в современной танковой броне.

Добавление небольших количеств урана к стали увеличивает её твёрдость, не сообщая ей хрупкости и повышая её кислотоустойчивость. Особенно кислотоустойчивым, даже по отношению к царской водке, является сплав урана с никелем (66% урана и 33% никеля) с точкой плавления 1200 о . Обеднённый уран используется и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. Этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Как уже упоминалось, в наше время урановые атомные бомбы не изготавливаются. Однако в современных плутониевых бомбах 238 U (в том числе – обеднённый уран) всё же применяется. Он составляет оболочку заряда, отражая нейтроны и добавляя инерцию в сжатие плутониевого заряда в имплозивной схеме подрыва. Это существенно повышает эффективность оружия и уменьшает критическую массу (т.е. уменьшает количество плутония, необходимого для создания цепной реакции деления). Применяют обеднённый уран и в водородных бомбах, запаковывая им термоядерный заряд, направляя сильнейший поток сверхбыстрых нейтронов на деление ядер и увеличивая тем самым энергетический выход оружия. Такая бомба называется оружием деление-синтез-деление в честь трёх стадий взрыва. Большая часть энергетического выхода при взрыве подобного оружия приходится как раз на деление 238 U, производящее значительное количество радиоактивных продуктов. Например, 77% энергии при взрыве водородной бомбы в испытании Ivy Mike (1952) мощностью 10,4 мегатонн пришлось именно на процессы деления в урановой оболочке. Поскольку обеднённый уран не имеет критической массы, его можно добавлять в бомбу в неограниченных количествах. В советской водородной бомбе (Царь Бомба – Кузькина мать), взорванной на Новой Земле в 1961 мощностью «только» 50 мегатонн 90% выхода пришлось на реакцию термоядерного синтеза, поскольку оболочку из 238 U на конечной стадии взрыва заменили на свинец. Если бы оболочку изготовили (как и собирались в начале) из 238 U, то мощность взрыва превыcила 100 мегатонн и выпадения радиоактивных осадков составило 1/3 от суммы всех мировых испытаний ядерного оружия.

Природные изотопы урана нашли применение в геохронологии для измерения абсолютного возраста горных пород и минералов. Еще в 1904 Эрнест Резерфорд обратил внимание на то, что возраст Земли и древнейших минералов – величина того же порядка, что и период полураспада урана. Тогда же он предложил по количеству гелия и урана, содержащихся в плотной породе, определять её возраст. Но вскоре выяснились недостаток метода: крайне подвижные атомы гелия легко диффундируют даже в плотных породах. Они проникают в окружающие минералы, а вблизи материнских урановых ядер остается значительно меньше гелия, чем следует по законам радиоактивного распада. Поэтому возраст пород вычисляют по соотношению урана и радиогенного свинца – конечного продукта распада урановых ядер. Возраст некоторых объектов, например, слюд, определить ещё проще: возраст материала пропорционален числу распавшихся в нём атомов урана, которое определяется числом следов – треков, оставляемых осколками в веществе. По отношению концентрации урана к концентрации треков можно вычислить возраст любого древнего сокровища (вазы, украшения и т.п.). В геологии даже изобрели специальный термин «урановые часы». Урановые часы – весьма универсальный инструмент. Изотопы урана содержатся во многих породах. Концентрация урана в земной коре в среднем равна трем частям на миллион. Этого достаточно, чтобы измерить соотношение урана и свинца, а затем по формулам радиоактивного распада рассчитать время, прошедшее с момента кристаллизации минерала. Урано-свинцовым способом удалось измерить возраст древнейших минералов, а по возрасту метеоритов определили дату рождения планеты Земля. Известен и возраст лунного грунта. Самые молодые куски лунного грунта старее древнейших земных минералов.

Уран. Природный уран состоит из смеси трех изотопов: уран-234, уран-235, уран-238. Искусственные радиоактивные - с массовыми числами 227-240. Период полураспада урана-235 - 7х108 лет, урана-238 - 4,5х109 лет. При распаде урана и дочерних радионуклидов испускаются альфа- и бета-излучения, а также гамма-кванты. Проникает уран в организм разными путями, в том числе и через кожу. Растворимые соединения быстро всасываются в кровь и разносятся по органам и тканям, накапливаясь в почках, костях, печени, селезенке. Биологический период полувыведения из легких - 118-150 суток, из скелета - 450 суток. За счет урана и продуктов его распада годовая составляет 1,34 мЗв.


Торий . Торий-232 - инертный газ. Продукты его распада - твердые радиоактивные вещества. Период полураспада - 1,4х1010 лет. При превращениях тория и продуктов его распада выделяются альфа- бета- частицы, а также гамма- кванты. В минерале торианите содержится до 45-88% тория. Из сплава тория с обогащенным ураном изготавливаются ТВЭЛы. В организм поступает через легкие, желудочно-кишечный тракт, кожу. Накапливается в костном мозге, селезенке. Биологический период полувыведения из большинства органов - 700 суток, из скелета - 68 лет.


Радий . Радий-226 является важнейшим радиоактивным продуктом распада урана-238. Период полураспада 1622 года. Это серебристо-белый металл. Широко применяется в медицине в качестве источника альфа-частиц для лучевой терапии. Поступает в организм через органы дыхания, желудочно-кишечный тракт и кожу. Большинство поступившего радия депонируется в скелете. Биологический период полувыведения из костей около 17 лет, из легких -180 дней, из других органов выводится в первые двое суток. При попадании в организм человека вызывает повреждение костной ткани, красного костного мозга, что приводит к нарушению гемопоэза, переломам, развитию опухолей. В течение одних суток 1г радия дает при распаде 1мм3 радона.


Радон. Радон-222 - бесцветный газ без запаха. Период полураспада 3,83 суток. Продукт распада радия-226. Радон - альфа- излучатель. Он образуется в месторождения урана в радиоактивных рудах, содержится в природном газе, грунтовых водах и т.д. Может выходить и по трещинам горных пород, в плоховентилируемых шахтах, рудниках его концентрация может достигать больших величин. Радон встречается во многих строительных материалах. В атмосферу поступает также при вулканической деятельности, при производстве фосфатов, работе геотермальных энергетических станций.


В лечебных целях применяется в виде радоновых ванн при лечении заболеваний суставов, костей, периферической нервной системы, хронических гинекологических заболеваний и др. Применяется также в виде ингаляций, орошений, приема внутрь воды, содержащей радон. В организм поступает в основном через органы дыхания. Период полувыведения из организма в пределах суток. Радон дает ¾ годовой эквивалентной дозы от земных источников облучения, и около ½ дозы от всех естественных источников радиации.


Калий. Калий-40 - серебристо-белый металл, в свободном виде не встречается, так как очень химически активен. Период полураспада
1,32 х 109 лет. При распаде излучает бета-частицу. Является типичным биологическим элементом. Потребность человека в калии - 2-3 мг на кг веса в сутки. Много калия содержится в картофеле, свекле, помидорах. В организме всасывается 100% поступившего калия, распределяется равномерно по всем органам, относительно больше его в печени, селезенке. Период полувыведения около 60 суток.


Йод. Йод-131 образуется в реакциях деления урана и плутония, а также при облучении теллура нейтронами. Период полураспада 8,05 дней. Поступает в организм через органы дыхания, желудочно-кишечный тракт (всасывается 100% поступившего йода), кожу. Накапливается в основном в щитовидной железе, концентрация его в железе в 200 раз выше, чем в других тканях. Распадаясь, йод выделяет бета-частицу и 2 гамма-кванта. Период полувыведения из щитовидной железы 138 дней, из других органов 10-15 суток. Из организма беременной женщины йод через плаценту переходит к плоду.


Цезий. Цезий-137 вносит решающий вклад в суммарную эквивалентную дозу облучения. Цезий - серебристо-белый металл. Является источником бета- и гамма- излучений. Период полураспада цезия-137 -
30 лет. До аварии на ЧАЭС основным источником поступления цезия в окружающую среду являлись ядерные взрывы. Большая часть выпавшего цезия находится в форме, которая легко усваивается. В растениях в основном накапливается в соломе и ботве. В кишечнике всасывается 100% поступившего цезия. Накапливается он в основном в мышечной ткани. Период полувыведения из мышц - 140 суток.


Стронций . Стронций-90 - период полураспада - 28,6 лет (у стронция-89 - 50,5 суток). Стронций-90 -бета-излучатель. Стронций легко усваивается растениями, животными, человеком. Концентратором стронция является - кукуруза, содержание стронция в ней в 5-20 раз больше, чем в почве. В организме человека в зависимости от диеты усваивается в желудочно-кишечном тракте от 5% до 100% поступившего стронция (в среднем 30%). Накапливается в основном в скелете. Максимальная концентрация наблюдается у детей до 1 года. Период полувыведения стронция из мягких тканей составляет до 10 суток, из костей - до 8-10 лет.


Плутоний . Плутоний-239 - является альфа-излучателем. Период полураспада его 24360 лет. Это серебристо-белый металл. Источником поступления плутония являются ядерные взрывы, а также реакторы АЭС, особенно аварийные выбросы. В почве находится в поверхностных слоях и донных отложениях водоемов. Поступает в организм через легкие и желудочно-кишечный тракт, причем усваивается из ЖКТ - значительно меньше 1%. Накапливается в легких, печени, костной ткани. Период полувыведения из скелета составляет 100 лет, из печени - 40 лет.


Америций . Америций-241 - продукт распада плутония-241 (период полураспада 241Рu составляет - 14,4 года). Период полураспада америция-241 составляет 432,2 года, при распаде выделяется альфа- частица. Америций растворяется в воде значительно лучше плутония, поэтому отличается большей миграционной способностью. Накапливается до 99% в поверхностных слоях почвы, 10% америция находится в растворенной форме и легко усваивается растениями. Концентрируется у человека в скелете, печени, почках. Период полувыведения из скелета - до 30 лет, из печени - до 5 лет.

()
239 Pu ()

Спин и чётность ядра 7/2 − Канал распада Энергия распада α-распад 4,6783(7) МэВ 20 Ne, 25 Ne, 28 Mg

В отличие от другого, наиболее распространенного изотопа урана 238 U , в 235 U возможна самоподдерживающаяся цепная ядерная реакция . Поэтому этот изотоп используется как топливо в ядерных реакторах , а также в ядерном оружии .

Образование и распад

Уран-235 образуется в результате следующих распадов:

texvc не найден; См. math/README - справку по настройке.): \mathrm{^{235}_{91}Pa} \rightarrow \mathrm{^{235}_{92}U} + e^- + \bar{\nu}_e; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathrm{^{235}_{93}Np} + e^- \rightarrow \mathrm{^{235}_{92}U} + \bar{\nu}_e; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathrm{^{239}_{94}Pu} \rightarrow \mathrm{^{235}_{92}U} + \mathrm{^{4}_{2}He}.

Распад урана-235 происходит по следующим направлениям:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathrm{^{235}_{92}U} \rightarrow \mathrm{^{231}_{90}Th} + \mathrm{^{4}_{2}He}; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathrm{^{235}_{92}U} \rightarrow \mathrm{^{215}_{82}Pb} + \mathrm{^{20}_{10}Ne}; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathrm{^{235}_{92}U} \rightarrow \mathrm{^{210}_{82}Pb} + \mathrm{^{25}_{10}Ne}; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mathrm{^{235}_{92}U} \rightarrow \mathrm{^{207}_{80}Hg} + \mathrm{^{28}_{12}Mg}.

Вынужденное деление

Ошибка создания миниатюры: Файл не найден

Кривая выхода продуктов деления урана-235 для различных энергий делящих нейтронов.

В продуктах деления урана-235 было обнаружено около 300 изотопов различных элементов : от =30 (цинк) до Z=64 (гадолиний). Кривая зависимости относительного выхода изотопов, образующихся при облучении урана-235 медленными нейтронами, от массового числа - симметрична и по форме напоминает букву «M». Два выраженных максимума этой кривой соответствуют массовым числам 95 и 134, а минимум приходится на диапазон массовых чисел от 110 до 125. Таким образом, деление урана на осколки равной массы (с массовыми числами 115-119) происходит с меньшей вероятностью, чем асимметричное деление , такая тенденция наблюдается у всех делящихся изотопов и не связана с какими-то индивидуальными свойствами ядер или частиц, а присуща самому механизму деления ядра. Однако асимметрия уменьшается при увеличении энергии возбуждения делящегося ядра и при энергии нейтрона более 100 МэВ распределение осколков деления по массам имеет один максимум, соответствующий симметричному делению ядра.

Осколки, образующиеся при делении ядра урана, в свою очередь являются радиоактивными, и подвергаются цепочке β − -распадов , при которых постепенно в течение длительного времени выделяется дополнительная энергия. Средняя энергия, выделяющаяся при распаде одного ядра урана-235 с учётом распада осколков, составляет приблизительно 202,5 МэВ = 3,244·10 −11 Дж , или 19,54 ТДж/моль = 83,14 ТДж/кг .

Деление ядер - лишь один из множества процессов, возможных при взаимодействии нейтронов с ядрами, именно он лежит в основе работы любого ядерного реактора .

Цепная ядерная реакция

При распаде одного ядра 235 U обычно испускается от 1 до 8 (в среднем - 2.416) свободных нейтрона. Каждый нейтрон, образовавшийся при распаде ядра 235 U, при условии взаимодействия с другим ядром 235 U, может вызвать новый акт распада, это явление называется цепной реакцией деления ядра .

Гипотетически, число нейтронов второго поколения (после второго этапа распада ядер) может превышать 3² = 9. С каждым последующим этапом реакции деления количество образующихся нейтронов может нарастать лавинообразно. В реальных условиях свободные нейтроны могут не порождать новый акт деления, покидая образец до захвата 235 U, или будучи захваченными как самим изотопом 235 U с превращением его в 236 U, так и иными материалами (например, 238 U, или образовавшимися осколками деления ядер, такими как 149 Sm или 135 Xe).

В реальных условиях достичь критического состояния урана не так просто, поскольку на протекание реакции влияет ряд факторов. Например, природный уран лишь на 0,72 % состоит из 235 U, 99,2745 % составляет 238 U , который поглощает нейтроны, образующиеся при делении ядер 235 U. Это приводит к тому, что в природном уране в настоящее время цепная реакция деления очень быстро затухает. Осуществить незатухающую цепную реакцию деления можно несколькими основными путями :

  • Увеличить объём образца (для выделенного из руды урана возможно достижение критической массы за счёт увеличения объёма);
  • Осуществить разделение изотопов, повысив концентрацию 235 U в образце;
  • Уменьшить потерю свободных нейтронов через поверхность образца с помощью применения различного рода отражателей;
  • Использовать вещество - замедлитель нейтронов для повышения концентрации тепловых нейтронов .

Изомеры

  • Избыток массы: 40 920,6(1,8) кэВ
  • Энергия возбуждения: 76,5(4) эВ
  • Период полураспада: 26 мин
  • Спин и чётность ядра: 1/2 +

Распад изомерного состояния осуществляется путём изомерного перехода в основное состояние.

Применение

  • Уран-235 используется в качестве топлива для ядерных реакторов , в которых осуществляется управляемая цепная ядерная реакция деления;
  • Уран с высокой степенью обогащения применяется для создания ядерного оружия . В этом случае для высвобождения большого количества энергии (взрыва) используется неуправляемая цепная ядерная реакция.

См. также

Напишите отзыв о статье "Уран-235"

Примечания

  1. G. Audi, A.H. Wapstra, and C. Thibault (2003). «». Nuclear Physics A 729 : 337-676. DOI :. Bibcode : .
  2. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «». Nuclear Physics A 729 : 3–128. DOI :. Bibcode : .
  3. Гофман К. - 2-е изд. стер. - Л. : Химия, 1987. - С. 130. - 232 с. - 50 000 экз.
  4. Фиалков Ю. Я. Применение изотопов в химии и химической промышленности. - Киев: Техніка, 1975. - С. 87. - 240 с. - 2 000 экз.
  5. . Kaye & Laby Online. .
  6. Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А. Основы теории и методы расчета ядерных энергетических реакторов. - М .: Энергоатомиздат, 1982. - С. 512.
Легче:
уран-234
Уран-235 является
изотопом урана
Тяжелее:
уран-236
Изотопы элементов · Таблица нуклидов

Отрывок, характеризующий Уран-235

Кристалл был материальным. И в то же время истинно волшебным. Он был вырезан из очень красивого камня, похожего на удивительно прозрачный изумруд. Но Магдалина чувствовала – это было что-то намного сложнее, чем простой драгоценный камень, пусть даже самый чистый. Он был ромбовидным и удлинённым, величиной с ладонь Радомира. Каждый срез кристалла был полностью покрыт незнакомыми рунами, видимо, даже более древними, чем те, которые знала Магдалина...
– О чём он «говорит», радость моя?.. И почему мне не знакомы эти руны? Они чуточку другие, чем те, которым нас учили Волхвы. Да и откуда он у тебя?!
– Его принесли на Землю когда-то наши мудрые Предки, наши Боги, чтобы сотворить здесь Храм Вечного Знания, – задумчиво смотря на кристалл, начал Радомир. – Дабы помогал он обретать Свет и Истину достойным Детям Земли. Это ОН родил на земле касту Волхвов, Ведунов, Ведуний, Даринь и остальных просветлённых. И это из него они черпали свои ЗНАНИЯ и ПОНИМАНИЕ, и по нему когда-то создали Мэтэору. Позже, уходя навсегда, Боги оставили этот Храм людям, завещая хранить и беречь его, как берегли бы они саму Землю. А Ключ от Храма отдали Волхвам, дабы не попал он случайно к «тёмномыслящим» и не погибла бы Земля от их злой руки. Так с тех пор, и хранится это чудо веками у Волхвов, а они передают его время от времени достойному, чтобы не предал случайный «хранитель» наказ и веру, оставленную нашими Богами.

– Неужели это и есть Грааль, Север? – не удержавшись, просила я.
– Нет, Изидора. Грааль никогда не был тем, чем есть этот удивительный Умный Кристалл. Просто люди «приписали» своё желаемое Радомиру... как и всё остальное, «чужое». Радомир же, всю свою сознательную жизнь был Хранителем Ключа Богов. Но люди, естественно, этого знать не могли, и поэтому не успокаивались. Сперва они искали якобы «принадлежавшую» Радомиру Чашу. А иногда Граалем называли его детей или саму Магдалину. И всё это происходило лишь потому, что «истинно верующим» очень хотелось иметь какое-то доказательство правдивости того, во что они верят… Что-то материальное, что-то «святое», что возможно было бы потрогать... (что, к великому сожалению, происходит даже сейчас, через долгие сотни лет). Вот «тёмные» и придумали для них красивую в то время историю, чтобы зажечь ею чувствительные «верующие» сердца... К сожалению, людям всегда были нужны реликвии, Изидора, и если их не было, кто-то их просто придумывал. Радомир же никогда не имел подобной чаши, ибо не было у него и самой «тайной вечери»... на которой он якобы из неё пил. Чаша же «тайной вечери» была у пророка Джошуа, но не у Радомира.
И Иосиф Аримафейский вправду когда-то собрал туда несколько капель крови пророка. Но эта знаменитая «Граальская Чаша» по-настоящему была всего лишь самой простой глиняной чашечкой, из какой обычно пили в то время все евреи, и которую не так-то просто было после найти. Золотой же, или серебряной чаши, сплошь усыпанной драгоценными камнями (как любят изображать её священники) никогда в реальности не существовало ни во времена иудейского пророка Джошуа, ни уж тем более во времена Радомира.
Но это уже другая, хоть и интереснейшая история.

У тебя не так уж много времени, Изидора. И я думаю, ты захочешь узнать совершенно другое, что близко тебе по сердцу, и что, возможно, поможет тебе найти в себе побольше сил, чтобы выстоять. Ну, а этот, слишком тесно «тёмными» силами запутанный клубок двух чужих друг другу жизней (Радомира и Джошуа), в любом случае, так скоро не расплести. Как я уже сказал, у тебя просто не хватит на это времени, мой друг. Ты уж прости...
Я лишь кивнула ему в ответ, стараясь не показать, как сильно меня занимала вся эта настоящая правдивая История! И как же хотелось мне узнать, пусть даже умирая, всё невероятное количество лжи, обрушенной церковью на наши доверчивые земные головы... Но я оставляла Северу решать, что именно ему хотелось мне поведать. Это была его свободная воля – говорить или не говорить мне то или иное. Я и так была ему несказанно благодарна за его драгоценное время, и за его искреннее желание скрасить наши печальные оставшиеся дни.
Мы снова оказались в тёмном ночном саду, «подслушивая» последние часы Радомира и Магдалины...
– Где же находится этот Великий Храм, Радомир? – удивлённо спросила Магдалина.
– В дивной далёкой стране... На самой «вершине» мира... (имеется в виду Северный Полюс, бывшая страна Гиперборея – Даария), – тихо, будто уйдя в бесконечно далёкое прошлое, прошептал Радомир. – Там стоит святая гора рукотворная, которую не в силах разрушить ни природа, ни время, ни люди. Ибо гора эта – вечна... Это и есть Храм Вечного Знания. Храм наших старых Богов, Мария...
Когда-то, давным-давно, сверкал на вершине святой горы их Ключ – этот зелёный кристалл, дававший Земле защиту, открывавший души, и учивший достойных. Только вот ушли наши Боги. И с тех пор Земля погрузилась во мрак, который пока что не в силах разрушить сам человек. Слишком много в нём пока ещё зависти и злобы. Да и лени тоже...

– Люди должны прозреть, Мария. – Немного помолчав, произнёс Радомир. – И именно ТЫ поможешь им! – И будто не заметив её протестующего жеста, спокойно продолжил. – ТЫ научишь их ЗНАНИЮ и ПОНИМАНИЮ. И дашь им настоящую ВЕРУ. Ты станешь их Путеводной Звездой, что бы со мной ни случилось. Обещай мне!.. Мне некому больше доверить то, что должен был выполнить я сам. Обещай мне, светлая моя.
Радомир бережно взял её лицо в ладони, внимательно всматриваясь в лучистые голубые глаза и... неожиданно улыбнулся... Сколько бесконечной любви светилось в этих дивных, знакомых глазах!.. И сколько же было в них глубочайшей боли... Он знал, как ей было страшно и одиноко. Знал, как сильно она хотела его спасти! И несмотря на всё это, Радомир не мог удержаться от улыбки – даже в такое страшное для неё время, Магдалина каким-то образом оставалась всё такой же удивительно светлой и ещё более красивой!.. Будто чистый родник с животворной прозрачной водой...
Встряхнувшись, он как можно спокойнее продолжил.
– Смотри, я покажу тебе, как открывается этот древний Ключ...
На раскрытой ладони Радомира полыхнуло изумрудное пламя... Каждая малейшая руна начала раскрываться в целый пласт незнакомых пространств, расширяясь и открываясь миллионами образов, плавно протекавших друг через друга. Дивное прозрачное «строение» росло и кружилось, открывая всё новые и новые этажи Знаний, никогда не виданных сегодняшним человеком. Оно было ошеломляющим и бескрайним!.. И Магдалина, будучи не в силах отвести от всего этого волшебства глаз, погружалась с головой в глубину неизведанного, каждой фиброй своей души испытывая жгучую, испепеляющую жажду!.. Она вбирала в себя мудрость веков, чувствуя, как мощной волной, заполняя каждую её клеточку, течёт по ней незнакомая Древняя Магия! Знание Предков затопляло, оно было по-настоящему необъятным – с жизни малейшей букашки оно переносилось в жизнь вселенных, перетекало миллионами лет в жизни чужих планет, и снова, мощной лавиной возвращалось на Землю...
Широко распахнув глаза, Магдалина внимала дивному Знанию Древнего мира... Её лёгкое тело, свободное от земных «оков», песчинкой купалась в океане далёких звёзд, наслаждаясь величием и тишиной вселенского покоя...
Вдруг прямо перед ней развернулся сказочный Звёздный Мост. Протянувшись, казалось, в самую бесконечность, он сверкал и искрился нескончаемыми скоплениями больших и маленьких звёзд, расстилаясь у её ног в серебряную дорогу. Вдали, на самой середине той же дороги, весь окутанный золотым сиянием, Магдалину ждал Человек... Он был очень высоким и выглядел очень сильным. Подойдя ближе, Магдалина узрела, что не всё в этом невиданном существе было таким уж «человеческим»... Больше всего поражали его глаза – огромные и искристые, будто вырезаны из драгоценного камня, они сверкали холодными гранями, как настоящий бриллиант. Но так же, как бриллиант, были бесчувственными и отчуждёнными... Мужественные черты лица незнакомца удивляли резкостью и неподвижностью, будто перед Магдалиной стояла статуя... Очень длинные, пышные волосы искрились и переливались серебром, словно на них кто-то нечаянно рассыпал звёзды... «Человек» и, правда, был очень необычным... Но даже при всей его «ледяной» холодности, Магдалина явно чувствовала, как шёл от странного незнакомца чудесный, обволакивающий душу покой и тёплое, искреннее добро. Только она почему-то знала наверняка – не всегда и не ко всем это добро было одинаковым.
«Человек» приветственно поднял развёрнутую к ней ладонь и ласково произнёс:
– Остановись, Звёздная... Твой Путь не закончен ещё. Ты не можешь идти Домой. Возвращайся в Мидгард, Мария... И береги Ключ Богов. Да сохранит тебя Вечность.
И тут, мощная фигура незнакомца начала вдруг медленно колебаться, становясь совершенно прозрачной, будто собираясь исчезнуть.

К марту 1939 года группы ученых, работавших во Франции и в Америке, доказали, что для самоподдерживающейся цепной реакции достаточно выделения в среднем двухчетырех свободных нейтронов при каждом делении уранового ядра. Растущие было опасения о возможности создания атомной бомбы, однако, быстро развеялись.

Бор решил не терять времени. Физика деления, как и любое другое новое направление в науке, несомненно, предоставляла неохватное поле для деятельности. И, поскольку в Принстоне работать можно было с не меньшим успехом, чем в Копенгагене, Бор обратился к Уилеру с предложением сотрудничества. Они занялись дальнейшей разработкой теории деления ядер, опираясь на новые экспериментальные данные. Эксперименты они проводили с аппаратом, собранным на скорую руку тут же, в Принстоне, на чердаке Палмеровской лаборатории. Полученные результаты были поначалу весьма озадачивающими.

Упомянутый выше аппарат нужен был, чтобы изучить изменения в интенсивности деления ядра урана под воздействием нейтронов, несущих каждый раз различные объемы энергии . Было установлено, что чем больше эта энергия, тем интенсивнее происходит деление, а с ее уменьшением интенсивность деления, соответственно, также снижается. Такие данные были вполне ожидаемы. Однако вскоре выяснилось, что при достаточном уменьшении энергии нейтронов интенсивность деления ядра снова возрастает.

Плачек, который ранее заставил работавшего в Копенгагене Фриша искать достоверное подтверждение ядерного расщепления, весьма неожиданно оказался в Принстоне. «Что это еще за чертовщина: почему отклик одинаковый и на быстрое и на медленное воздействие?!» - возмущался он, сидя за завтраком вместе с Розенфельдом и Бором.

Возвращаясь вскоре в свой кабинет, Нильс Бор уже знал ответ на этот вопрос. Судя по всему, причина высокой интенсивности деления ядра при малой энергии воздействующих нейтронов - редкий изотоп уран-235 (U 235), который составляет ничтожно малый процент от общего количества этого элемента, встречающегося в природе. Бор и Уилер приступили теперь к детальной разработке данной гипотезы. И в новой теории были установлены два основополагающих фактора.

В изотопе U 235 баланс между отталкивающей силой протонов в ядре атома и силой поверхностного натяжения, удерживающей ядро от распада, гораздо более хрупкий, чем в изотопе U 238 . Три дополнительных нейтрона урана-238 стабилизируют ядро и увеличивают энергетический барьер, который необходимо преодолеть, чтобы запустить реакцию распада. Следовательно, для расщепления такого ядра необходимы более быстрые нейтроны с большей энергией.

Вторым из упомянутых факторов стал непосредственно сложный состав ядра. Для него более благоприятно равное число протонов и нейтронов, что объясняется квантовой природой их субатомных составляющих. Приняв дополнительный нейтрон, U 235 превращается в U 236 , в ядре которого 92 протона и 144 нейтрона, то есть четное число обоих нуклонов. Когда U 238 принимает добавочный нейтрон, то образуется изотоп U 239 с нечетным числом нейтронов в ядре. Уран-235 «ассимилирует» дополнительный нейтрон и вступает с ним в реакцию намного проще, чем уран-238.

Совокупность двух вышеописанных факторов в достаточной степени объясняет существенное различие в поведении двух изотопов урана. Для расщепления устойчивого ядра U 238 требуются быстрые нейтроны, а гораздо менее стабильное ядро U 235 разделить можно медленными. Таким образом, если изготовить бомбу, состоящую из смеси U 235 и U 238 , действие которой будет основано на расщеплении урана-235 под воздействием медленных нейтронов, то и цепная реакция в ней будет происходить медленно. Затем она затухнет, а бомба так и не взорвется.

Теперь шансы на создание бомбы в ближайшем будущем хотя и не исчезли совсем, но значительно снизились. Конечно, нельзя забывать и о словах Бора, неоднократно повторяемых им в ходе дискуссий с коллегами в апреле 1939 года: тогда он заявил, что изготовить бомбу можно при условии, что она будет сделана на основе чистого урана-235. Однако U 235 - редкий изотоп и его доля по отношению к природному урану составляет 1:140, то есть ничтожные 0,7 %. К тому же U 235 и U 238 по химическим свойствам идентичны, и поэтому с помощью химической реакции их разделить нельзя. Это возможно только с применением специальных физических методов, позволяющих отделить изотопы друг от друга, используя практически незаметную разницу в их массе. При этом подобные работы в масштабах, необходимых для создания атомной бомбы, требовали неоправданно больших усилий - на тогдашнем уровне разработок для нее требовалось несколько тонн урана-235.