Активные вещества пав. Свойства неионных пав

на неск. порядков выше, чем в объеме жидкости , поэтому даже при ничтожно малом содержании в воде (0,01-0,1% по массе) ПАВ могут снижать поверхностное натяжение воды на границе с воздухом с 72,8·10 -3 до 25·10 -3 Дж/м 2 , т.е. практически до поверхностного натяжения углеводородных жидкостей . Аналогичное явление имеет место на границе водный р-р ПАВ - углеводородная жидкость , что создает предпосылки для образования эмульсий .

Основной количественной характеристикой ПАВ является - способность вещества снижать поверхностное натяжение на границе раздела фаз - это производная поверхностного натяжения по концентрации ПАВ при стремлении С к нулю.

В объеме жидкой фазы ПАВ могут находиться
- или в виде отдельных молекул (истинно растворимые ПАВ),
-или объединяться в группы по нескольку десятков молекул - Предельная концентрация ПАВ в растворе, при которой начинается образование мицелл, называется ).

Строение ПАВ

Как правило, ПАВ - органические соединения, имеющие амфифильное строение , то есть их молекулы имеют в своём составе полярную часть, гидрофильный компонент(функциональные группы -ОН, -СООН, -SOOOH, -O- и т. п., или, чаще, их соли -ОNa, -СООNa, -SOOONa и т. п.) и неполярную (углеводородную) часть, гидрофобный компонент. Примером ПАВ могут служить обычное мыло (смесь натриевых солей жирных карбоновых кислот - олеата , стеарата натрия и т. п.) и СМС (синтетические моющие средства), а также спирты , карбоновые кислоты , амины и т. п.

Классификация ПАВ

  • Ионогенные ПАВ
    • Катионные ПАВ
    • Анионные ПАВ
    • Амфотерные
  • Неионогенные ПАВ
    • Алкилполиглюкозиды
    • Алкилполиэтоксилаты


Анионактивные ПАВ

- содержат в молекуле одну или несколько полярных групп и диссоциируют в водном растворе с образованием длинноцепочечных анионов, определяющих их поверхностную активность. Это группы: COOH(M), OSO
2 OH(M), SO 3 H(M), где M-металл (одно-, двух- или трехвалентный). Гидрофобная часть молекулы обычно представлена предельными или непредельными алифатическими цепями или алкилароматическими радикалами.

В анионактивных ПАВ катион м.б. не только металлом, но и органическим основанием. Часто это ди- или триэтаноламин. Поверхностная активность начинает проявляться при длине углеводородной гидрофобной цепи C 8 и с увеличением длины цепи увеличивается вплоть до полной потери растворимости ПАВ в воде. В зависимости от структуры промежуточных функциональных групп и гидрофильности полярной части молекулы длина углеводородной части может доходить до C 18 .

Катионактивные ПАВ

- диссоциируют в водном растворе с образованием поверхностно-активного катиона с длинной гидрофобной цепью и аниона (обычно галогенида, иногда аниона серной или фосфорной кислоты).

Среди катионактивных ПАВ преобладают азотсодержащие соединения; также используются вещества, не содержащие азот: соединения сульфония +X-и сульфоксония +Х-, фосфония +X-, арсония +Х-, иодония.

Катионактивные ПАВ меньше снижают поверхностное натяжение, чем анионактивные, но они химически взаимодействуют с поверхностью адсорбента, напр. с клеточными белками бактерий, обусловливая бактерицидное действие.

Амфолитные ПАВ
– в зависимости от величины рН они проявляют свойства катионактивных или анионактивных ПАВ.

Содержат в молекуле гидрофильный радикал и гидрофобную часть, способную быть акцептором или донором протона в зависимости от рН раствора. Обычно эти ПАВ включают одну или несколько основных и кислотных групп, могут содержать также и неионогенную полигликолевую группу. При некоторых значениях рН, наз. изоэлектрической точкой, ПАВ существуют в виде цвиттер-ионов. Константы ионизации кислотных и основных групп истинно растворимых амфотерных ПАВ весьма низки, однако чаще всего встречаются катионно-ориентированные и анионно-ориентированные цвиттер-ионы. В качестве катионной группы обычно служит первичная, вторичная или третичная аммониевая группа, остаток пиридина или имидазолина. Вместо N м.б. атомы S, P, As и т. п. Анионными группами являются карбоксильные, сульфонатные, сульфоэфирные или фосфатные группы.

Неионогенные ПА

– высокомолекулярные соединения, не образующие ионов в водном растворе.

Их растворимость обусловлена наличием в молекулах гидрофильных эфирных и гидроксильных групп, чаще всего полиэтиленгликолевой цепи. При растворении образуются гидраты вследствие образования водородной связи между кислородными атомами полиэтиленгликолевого остатка и молекулами воды. Вследствие разрыва водородной связи при повышении температуры растворимость неионогенных ПАВ уменьшается, поэтому для них точка помутнения - верх. температурный предел мицеллообразования- является важным показателем. Mногие соединения., содержащие подвижной атом H (кислоты, спирты, фенолы, амины), реагируя с этиленоксидом, образуют неионогенные ПАВ RO (C2H4O)nH. Полярность одной оксиэтиленовой группы значительно меньше полярности любой кислотной группы в анионактивных ПАВ. Поэтому для придания молекуле требуемой гидрофильности и значения ГЛБ в зависимости от гидрофобного радикала требуется от 7 до 50 оксиэтиленовых групп. Характерная особенность неионогенных ПАВ - жидкое состояние и малое пенообразование в водных растворах.

Неионогенные ПАВ хорошо комбинируются с другими ПАВ и часто включаются в рецептуры

Благодаря моющим, смачивающим, эмульгирующим, диспергирующим и другим ценным свойствам ПАВ находят широкое применение в производстве моющих и чистящих средств, косметических и фармацевтических препаратов. латексов, каучука. полимеров, химических средств защиты растений, текстиля, кожи и бумаги, строительных материалах, ингибиторов коррозии, при добыче, транспортировке и переработке нефти и др. Большая часть ПАВ применяется для производства синтетических моющих средств (СМС).

Поверхностно-активные вещества обладают относительно низкой токсичностью для организма человека и животных. По степени увеличения токсичности ПАВ можно распределить в следующем порядке: неионогенные, анионактивные, катионактивные. При воздействии на кожу и слизистые оболочки синтетические ПАВ могут проявлять раздражающее и резорбтивное действие. Установлено, что композиции из анионных и неионогенных соединений оказывают менее выраженное биологическое и токсическое действие. Неионогенные ПАВ снижают адсорбцию анионных веществ и только в больших дозах могут оказывать повреждающее действие на кожу. Наибольшая опасность поверхностно-активных веществ и препаратов на их основе для людей, заключается в их сенсибилизирующем действии, способности вызывать аллергические реакции. Сенсибилизация может происходить при любых путях поступления ПАВ в организм.


Источники поступления ПАВ в водную среду

В водные объекты ПАВ поступают в значительных количествах с хозяйственно-бытовыми (использование синтетических моющих средств в быту) и промышленными сточными водами (текстильная, нефтяная, химическая промышленность, производство синтетических каучуков), а также со стоком с сельскохозяйственных угодий (входят в состав инсектицидов, фунгицидов, гербицидов и дефолиантов в качестве эмульгаторов).



Применение поверхностно-активных веществ (ПАВ)

ПАВ находят широкое применение в промышленности, в сельском хозяйстве, медицине и быту. Мировое производство ПАВ растет с каждым годом, причем в общем выпуске продукции постоянно возрастает доля неионогенных веществ. Широко используют все виды ПАВ при получении и применении синтетических полимеров. Важнейшая область потребления мицеллообразующих ПАВ - производство полимеров методом эмульсионной полимеризации. От типа и концентрации выбранных ПАВ (эмульгаторов) во многом зависят технологические и физико-химические свойства получаемых латексов. ПАВ используют также при суспензионной полимеризации. Обычно применяют высокомолекулярные ПАВ - водорастворимые полимеры (воливиниловый спирт, производные целлюлозы, растительные клеи и т.п.). Смешиванием лаков или жидких масляносмоляных композиций с водой в присутствии эмульгаторов получают эмульсии, применяемые при изготовлении пластмасс, кожзаменителей, нетканых материалов, импрегированных тканей, водоразбавляемых красок и т.д. Высокомолекулярные водорастворимые ПАВ, помимо использования в указанных выше технологич. процессах, применяют как флокулянты в различных видах водоочистки. С их помощью из сточных вод, а также из питьевой воды удаляют загрязнения, находящиеся во взвешенном состоянии .

Информация была позаимствована у следующих источников:

1) www.wikipedia.org

3) www.hydrodynamictechnology.com

ПАВ (Поверхностно Активные Вещества) — это, как правило, химические вещества, которые содержатся в любом чистящем средстве, даже в обычном мыле. Как раз благодаря ПАВам чистящее средство чистит. Для чего ПАВы нужны?

Проблема в том, что грязь, особенно жир, очень сложно смыть водой. Попробуйте помыть жирные руки водой. Вода будет стекать не смывая жир. Молекулы воды не липнут к молекулам жира и не забирают их с собой. Стало быть, задача в том, чтобы прикрепить молекулы жира к молекулам воды. Именно это и делают ПАВы. Молекула ПАВ представляет собой сферу, один полюс которой — липофильный (соединяется с жирами), а другой — гидрофильный (вступает в связь с молекулами воды). То есть одним концом частица ПАВ прикрепляется к частице жира, а другим концом — к частицам воды.

Как ПАВ влияют на нашу кожу

Однако большая часть влаги человеческого тела имеет также жировую основу. Т.е. например защитный слой кожи (липиды — жиры, которые защищают кожу от попадания в организм различных бактерий) является жировой пленкой и естественно разрушается ПАВами. А зараза нападает на то место, которое наименее защищено, что конечно же вредно для здоровья человека. ПАВы также разрушают клетки организма (активность разрушения зависит от типа ПАВ).

Специалисты утверждают, что после применения моющего средства, защитный слой кожи должен успеть восстановиться в течение 4 часов до, как минимум 60%. Это установленные ГОСТом нормы гигиены. Однако далеко не все моющие средства обеспечивают такую восстановимость кожи. Обезжиренная и обезвоженная кожа быстрей стареет. Кроме того, ПАВы могут накапливаться в мозге, печени, сердце, жировых отложениях (особенно много) и продолжать разрушение организма длительное время. А поскольку без моющих средств практически никто не обходится, то ПАВы постоянно пополняются в нашем организме обеспечивая непрерывный вред телу. ПАВы также влияют на репродуктивную функцию у мужчин, аналогично радиоактивному излучению.

Проблема усугубляется тем, что наши очистные сооружения плохо справляются с удалением ПАВов. Поэтому вредные ПАВы возвращаются через водопровод к нам почти в той же концентрации, в которой мы их выливаем в сток. Исключение составляют только средства с биоразлагаемыми ПАВами .

Виды ПАВы, особенности и какие из них биоразлагаемы

  • Анионные ПАВ — Основным достоинством является относительно невысокая стоимость, эффективность и хорошая растворимость. Но они наиболее агрессивны по отношению к организму человека.
  • Катионные ПАВ обладают бактерицидным свойством.
  • Неионогенные ПАВ — Основным достоинством является благоприятное действие на ткань и главное — 100% биоразлагаемость.
  • Амфолитные ПАВ — в зависимости от среды (кислотность/щелочность) проявляют себя либо как катионные, либо как анионные ПАВы.

Хорошей биоразлагаемостью (на 80-98%) обладают некоторые из анионоактивных (анионных) ПАВ , например, алкилсульфонаты. Но наиболее полной (100%) биоразлагаемостью обладают неионогенные ПАВ.

Включение в рецептуру моющих средств неионогенных ПАВ приводит к более низкому содержанию анионактивных веществ на коже. Аналогичный эффект, а именно снижение накопления анионных ПАВ на коже и тканях, был установлен при введении в композиции моющих средств ферментов биологического происхождения.

Одним из основных критериев экологической безопасности товаров бытовой химии является биоразлагаемость ПАВ , которые входят в их состав. Различают первичную биоразлагаемость, которая подразумевает структурные изменения (трансформацию) ПАВ микроорганизмами, приводящие к потере поверхностно-активных свойств. Под полной биоразлагаемостью имеют ввиду конечную биодеградацию ПАВ до диоксида углерода и воды. Но на биоразлагаемость ни один товар бытовой химии в наших СанЭпидемСтанциях не проверяют.

Поверхностно-активные вещества – это химические соединения, способные накапливаться на поверхности соприкосновения двух тел или двух термодинамических фаз (называемых поверхностью раздела фаз), и вызывающие снижение поверхностного натяжения веществ, образующих эти фазы.


На межфазной поверхности Поверхностно-активные вещества образуют слой повышенной концентрации - адсорбционный слой .

Строение ПАВ

Строго говоря, очень многие вещества при соответствующих условиях могут проявить поверхностную активность, т. е. адсорбироваться под действием межмолекулярных сил на той или иной поверхности, понижая её свободную энергию.


Однако поверхностно-активными обычно называются лишь те вещества, присутствие которых в растворах уже при весьма малых концентрациях (десятые и сотые доли %) приводит к резкому снижению поверхностного натяжения вещества этих растворов.


Как правило, такие вещества имеют дифильное строение молекул .


Слово дифильный можно перевести как «двояколюбящий» (от philéo - люблю). Или, выражаясь по-русски, дифильными можно назвать молекулы, имеющие сродство к веществам с разной природой.


Например, вода и масло почти не взаимодействуют друг с другом. Если их смешать в одной ёмкости, то такая смесь через некоторое время расслоится. Вода, как более тяжёлая, окажется внизу ёмкости, а масло соберётся в верхней её части.


Расслоение присходит потому, что масло и вода относятся к разным средам. Между молекулами этих сред действуют принципиально разные силы. Подробнее об этом в разделе: Взаимодействие "воды" и "масла".


Молекулы воды взаимодействуют друг с другом при помощи ориентационных сил , а молекулы масла – при помощи дисперсионных сил . Таким образом, при встрече вода и масло проявляют друг к другу безразличие.


В молекулах дифильных веществ одновременно присутствуют как полярные (гидрофильные) группы, так и неполярные (гидрофобные).


Примером полярных групп могут служить –OH, -COOH, -NO2, -NH2, -CN, -OSO3 и т.д. Неполярной частью молекулы обычно являются углеродные радикалы.


К ПАВам относятся карбоновые кислоты, их соли, спирты, амины, сульфокислоты и другие вещества.


Самым распространённым примером веществ с дифильной структурой являются мыла – натриевые и калиевые соли высших жирных кислот.

Работа ПАВ в дисперсных системах

Дифильные вещества обладают замечательным качеством. Они являются своего рода «мостиками», при помощи которых становится возможным взаимодействие фаз, до этого «игнорировавших» друг друга.


Действие таких веществ проявляется на поверхности соприкасающихся фаз и приводит к ативности сами вещества фаз, которые до этого момента не взаимодействовали.


Благодаря своим качествам ПАВ ы могут использоваться в составах моющих средств или стабилизаторов эмульсий.


Моющие средства


Моющие средства - вещества или смеси веществ, применяемые в водных растворах для очистки (отмывки) поверхности твёрдых тел от загрязнений.


В моющих средствах ПАВы работают следующим образом.


Молекула ПАВ – это дифильная молекула, имеющая в своём составе, как полярные (гидрофильные) группы, так и неполярные (гидрофобные).


Таким образом, своим гидрофобным хвостом она может взаимодействовать с молекулами загрязнения (как правило, имеющего жирную, т.е гидрофобную природу), а при помощи своей полярной группы связывается с полярной молекулой воды.


Одновременно с этим молекулы ПАВ внедряются в поверхностный слой загрязнения и понижают силы взаимного притяжения между молекулами загрязнения.


Говоря по-другому, молекулы ПАВ положительно адсорбируются в поверхностном слое загрязнения и снижают поверхностное натяжение взаимодействующих фаз. Это, в свою очередь, облегчает возможность отрыва отдельных кусочков загрязнения от основной его массы. Оторванные части загрязнения уносятся водой.


Самые известные моющие средства – мыла. Мыла представляют собой натриевые и калиевые соли жирных кислот (натриевые – твёрдые, калиевые – жидкие).


CH3 (CH2 )n COONa.


Стабилизаторы эмульсий.


Эму́льсия - дисперсная система, состоящая из микроскопических капель жидкости (дисперсной фазы ), распределенных в другой жидкости (дисперсионной среде ).


Дисперсная фаза и дисперсионная среда – это две фазы жидкостей, имеющих разную природу, и по этой причине, не растворяющиеся одна в другой, отторгающие друг друга.


Если уже знакомые нам воду и масло тщательно перемешать друг с другом при помощи миксера, то они образуют дисперсную систему, в которой маленькие частички воды будут соседствовать с частичками масла.


Но эта дисперсная система просуществует недолго. По уже известным нам причинам произойдёт расслоение фаз. Частички воды и масла будут укрупняться, соединяясь с себе подобными. Через некоторое время произойдёт образование двух монолитных фаз: масло вверху, вода внизу. Так что такую систему нельзя назвать дисперсной.


Чтобы дисперсная система состоялась, в её состав добавляют специальные вещества – стабилизаторы эмульсий или эмульгаторы.


Эмульгаторы представляют собой поверхностно активные вещества.


Представим себе эмульсию типа «масло в воде». В такой эмульсии микроскопические капельки масла будут распределены в объёме воды.


Эмульгатор , присутствующий в эмульсии, состоит из молекул дифильной природы. Своими гидрофобными хвостами молекулы эмульгатора будут взаимодействовать с молекулами масла. В результате этого взаимодействия вытянутые молекулы эмульгатора приобретут чёткую ориентацию: гидрофобные хвосты внутрь, полярные группы наружу.


Такое образование, напоминающее свернувшегося ежа, называется мицеллой .



Наружная поверхность мицеллы будет образована полярными (гидрофильными) группами эмульгатора. А эти группы, как мы знаем, могут взаимодействоать с молекулами воды, притягивая к себе противоположно заряженные части этих молекул.


Эта конструкция позволяет эмульсии избежать расслоения и в течение долгого времени сохраняет её стабильной.

Классификация ПАВ

Поверхностно активные вещества можно классифицировать по разным признакам. Мы приведём три вида классификаций:


По типу гидрофильных групп:

Анионные

Катионные

Амфотерные

Неионные


По характеру использования:

Моющие средства

Эмульгаторы

Смачиватели

Солюблизаторы


По длине гидрофобной цепи:

Гидрофобные ПАВ

Гидрофильные ПАВ


Классификация по типу гидрофильных групп:


Для ПАВ эта классификация является основной.


По типу гидрофильных групп ПАВы делят на:

Ионные, или ионогенные,

Анионные,

Катионные,

Амфотерные.

Неионные, или неионогенные.


Ионные ПАВы


Ионные ПАВы диссоциируют в воде на ионы, одни из которых обладают адсорбционной (поверхностной) активностью, другие - неактивны.


Рабочее действие ПАВа обеспечивается именно адсорбционно активными ионами.


Если адсорбционно активны анионы (т.е. отрицательно заряженные ионы), то ПАВы называются анионными , или анионоактивными, если активны катионы (положительно заряженные ионы) - катионными , или катионо-активными.


Амфотерные (или амфолитные) ПАВ содержат в своём составе одновременно две функциональные группы, одна из которых имеет кислый, другая – основной характер. В зависимости от среды, в которой они находятся, амфотерные ПАВы могут принимать или отдавать протон и проявлять, таким образом, либо анионную либо катионную активность.


Анионные ПАВы


Анионные ПАВы , как говорилось выше, диссоциируют, образуя отрицательно заряженные органические анионы:


RCOONa ↔ RCOO - + Na +


По своему составу анионные ПАВы , чаще всего - это органические кислоты и их соли:


R-COOН или R-COONa, R-COOК.


Наиболее распространены натриевые и калиевые соли жирных кислот. Их называют мылами. Натриевые соли имеют твёрдую консистенцию, калиевые – жидкую.


Также, большое распространение имеют соли кислых эфиров высокомолекулярных спиртов жирного ряда и серной кислоты с общей формулой:


CH3 (CH2 )n -O-SO3 Na


где n = 12 - 14.


Такие соли называются алкилсульфатами . Алкилсульфаты вырабатываются из спиртов с количеством углеродных атомов в цепи С12 – С14, получаемых из кокосового масла или гидрогенезацией кашалотного жира. Жирные спирты подвергаются фракционной дистилляции, и сульфатируются серной или хлорсульфоновой кислотой.


Полученный таким образом лаурилсульфат является одним из наиболее широко используемых анионных моющих средств. Его формула:


CH3 (CH2 )11 -O-SO3 Na


К анионным ПАВам принадлежат многие классы химических соединений. В таблице ниже приведём некоторые из них:


Некоторые анионные ПАВ

Наименование ПАВ

Строение


Среди ПАВов именно анионные ПАВы получили самое большое распространение. Их объём производства превышает объёмы производства всех остальных ПАВ вместе взятых.


Катионные ПАВы


Катионные ПАВы при диссоциации образуют положительно заряженные поверхностно-активные органические катионы:


RNH2 Cl ↔ RNH2 + .


Катионные ПАВы - основания, обычно амины различной степени замещения, и их соли. Они представлены следующими соединениями:


Некоторые катионные ПАВ

Наименование ПАВ

Строение

Четвертичные аммониевые соли


Объём производства катионных ПАВ значительно ниже, чем анионных, ни их роль с каждым годом возрастает благодаря их моющему и бактерицидному действию , а некоторые их представители, например цетилпиридиний хлорид, вошли в арсенал лекарственных средств.



Амфотерные (или амфолитные) ПАВ в зависимости от условий среды могут проявлять либо анионную, либо катионную активность.

Необходимым условием амфотерности ПАВ является близость констант и основной диссоциации.


Степень превращения ПАВа в катионную или анионную форму зависит от рН среды.


К амфотерным ПАВ относят чаще всего соединения, содержащие одновременно:


Карбоксильную и аминогруппу RN + HR1COO - ;

Сульфоэфирную и аминогруппу RN + HR1ОSO - 3 ;

Сульфонатную и аминогруппу RN + HR1SO - 3.


Наиболее типичным представителем этого класса ПАВ является альфа-алкил-бетаин, получивший торговое название бетаин :


Неионные ПАВы


Неионные ПАВ представляют собой высокомолекулярные соединения, которые в водном растворе не образуют ионов.


Растворимость этих ПАВ в воде обусловлена наличием в молекуле неионогенных групп – эфирных или гидроксильных (чаще всего полиэтиленгликолиевый остаток).


Неионные ПАВы представляют особую ценность для медицинской промышленности. Это объясняется несколькими причинами:


1. свойства неионных ПАВ, зависящие от соотношения гидрофильной и липофильной частей молекул, можно изменять, укорачивая или удлинняя углеводородную цепочку и меняя степень полимеризации. Таким образом можно получать продукты с разнообразными, а главное, - точно заданными физическими и химическими свойствами.

2. Неионные ПАВы обладают большой устойчивостью к воздействию щелочей, кислот и солей. Они совместимы с большинством лекарственных веществ, могут смешиваться с органическими растворителями.

3. В отличие от ионных ПАВ, неионные ПАВы оказывают меньшее раздражающее действие на кожный покров и слизистые оболочки. Они не агрессивны, повышают резорбцию лекарственных веществ; эффективны как вспомогательные вещества в приготовлении лекарственных форм.


К классу неионных ПАВ, не подвергающихся электролитической диссоциации принадлежат следующие соединения.


Некоторые неионные ПАВ

Наименование ПАВ

Строение

1. Полиэтиленоксидные производные

2. Полиоксипроизводные

3. Алкилоламиды жирных кислот

Полигликолевый эфир полипропиленгликоля


Классификация по характеру использования:


Моющие средства

Эмульгаторы

Смачиватели

Солюблизаторы


Моющие средства - вещества или смеси веществ, применяемые в водных растворах для очистки (отмывки) поверхности твёрдых тел от загрязнений.


Частным случаем эмульгаторов являются пенообразователи и стабилизаторы пены.


Смачиватели – вещества, вызывающие пептизацию или диспергирование, т.е. измельчение твёрдых тел на мелкие частички или жидкой фазы на мелкие капельки.


Смачивание – первая фаза моющего действия, когда загрязнение распадается на отдельные частички или капельки и впоследствии обвалакивается ПАВом (солюблизируется), и удаляется водой.


Солюблизаторы – вещества, помогающие повысить растворение частиц другого вещества, слаборастворимого в данной жидкой среде.

Молекулы солюблизатора обвалакивают плохо растворимую в данной среде частичку и образуют вокруг неё, так называемую мицеллу.


Сама мицелла имеет сродство к среде растворителя и поэтому растворяется в нём, обеспечивая растворение изначально нерастворимой в нём частицы.


Эмульгаторы - вещества, обеспечивающие стабилизацию эмульсий из несмешивающихся жидкостей.


Смачивание, солюблизация, эмульгирование – все эти процессы являются стадиями моющего действия. Любой ПАВ, в той или иной степени, одновременно является и смачивателем, и солюблизатором, и эмульгатором, и моющим веществом. Но при этом, разные ПАВы проявляют разную эффективность на разных стадиях моющего действия. По этой причине они могут быть классифицированы на смачиватели, солюблизаторы, эмульгаторы и моющие средства.


Классификация ПАВ по длине гидрофобной цепи:


Этот вид классификации особенно важен в случаях, когда поверхностно-активные вещества выполняют роль стабилизаторов эмульсий (эмульгаторов ).


Напомним, что эмульгаторы представляют собой дифильные вещества, молекулы которых имеют в своём составе, как полярную (гидрофильную) группу, так и неполярную (гидрофобную) часть.



В зависимости от длины углеводородного (гидрофобного) «хвоста» и силе полярных групп в молекуле такой молекулы, эмульгатор, в целом, будет проявлять или гидрофильные или гидрофобные качества . А от этого всецело будет менятся его роль при стабилизации разного рода эмульсий.


Гидрофильные эмульгаторы.


Эмульгаторы с относительно короткой гидрофобной частью , имеют большее сродство с водой и их, поэтому называют гидрофильными .


Гидрофильные эмульгаторы необходимы для стабилизации эмульсий типа «масло в воде». При добавлении гидрофильного эмульгатора в такую эмульсию вокруг капельки масла образуется сплошной слой эмульгатора, сообщающий ей некоторую гидрофильность и повышающий её устойчивость.



а - гидрофильный эмульгатор,
б - гидрофобный эмульгатор.


Добавление в такую же смесь гидрофобного эмульгатора , большая часть молекулы которого погружается в капельку масла, не обеспечивает устойчивости эмульсии, поскольку часть поверхности капельки остаётся «открытой» и легко может происходить слияние с другими капельками.


Гидрофобные эмульгаторы.
Стабилизация эмульсий типа «вода в масле».


Эмульгаторы, молекулы которых имеют относительно длинную гидрофобную часть, обладают преимущественно гидрофобными свойствами. Такие эмульгаторы называют гидрофобными (или липофильными).


Гидрофобные эмульгаторы стабилизируют эмульсии типа «вода в масле». Их молекула, находящаяся большей своей частью в дисперсионной среде (масле), удерживается на поверхности капелек воды своей гидрофильной группировкой (Рис. а).



а - гидрофобный эмульгатор,
б - гидрофильный эмульгатор.


В результате вокруг каждой капельки воды образуется плотная оболочка из молекул эмульгатора, препятствующая слиянию дисперсной фазы (воды).


Попытка получить эмульсию такого же типа с гидрофильным эмульгатором оказалась бы безуспешной, так как молекулы эмульгатора разместились бы в основном внутри капелек воды
(Рис. б).


Вместо сплошной оболочки вокруг капелек имелись бы лишь выступающие над их поверхностью отдельные гидрофобные группы эмульгатора, не препятствующие коалесценции капелек.


Таким образом, эмульгатор должен обладать сродством к дисперсионной среде .


В зависимости от типа желаемой эмульсии следует брать гидрофильные или гидрофобные эмульгаторы той или иной степени диссоциации.



Гидрофильно-липофильный баланс ПАВ


Для количественной оценки пригодности ПАВов в разных областях использования, в том числе, в качестве эмульгаторов в различных средах был введен параметр, называемый гидрофильно-липофильным балансом (ГЛБ ).


Каждому поверхно-активному веществу соответствует определённая величина ГЛБ .

Самое низкое значение ГЛБ имеет олеиновая кислота C17H33COOH (ГЛБ = 1 ),

а самое высокое - лаурилсульфат натрия C12H25SO4Na (ГЛБ = 40 ).

Для всех остальных ПАВ величина ГЛБ находится в пределах от 1 до 40 .


На основании величин ГЛБ определяется сфера использования ПАВ, например:



ПАВ с липофильными свойствами имеют низкие значения ГЛБ, с гидрофильными – высокие.

Использование ПАВ

Мировое производство ПАВ постоянно возрастает, причём доля неионных и катионных веществ в общем выпуске всё время увеличивается .


В зависимости от назначения и химического состава ПАВы выпускают в виде твёрдых продуктов (кусков, хлопьев, гранул, порошков), жидкостей и полужидких веществ (паст, гелей).


Особое внимание всё больше и больше уделяется производству ПАВ с линейным строением молекул, которые легко подвергаются биохимическому разложению в природных условиях и не загрязняют окружающую среду .


ПАВ находят широкое применение в промышленности, сельском хозяйстве, медицине, быту. Важнейшие области потребления ПАВ: производство мыл и моющих средств для технических и санитарно-гигиенических нужд; текстильно-вспомогательных веществ, т. е. веществ, используемых для обработки тканей и подготовки сырья для них; лакокрасочной продукции.


ПАВ используют во многих технологических процессах химических, нефтехимических, химико-фармацевтических, пищевой промышленности. Их применяют:

  • как присадки, улучшающие качество нефтепродуктов;
  • как флотореагенты при флотационном обогащении полезных ископаемых;
  • компоненты гидроизоляционных и антикоррозионных покрытий и т.д.

ПАВы

  • облегчают механическую обработку металлов и др. материалов,
  • повышают эффективность процессов диспергирования жидкостей и твёрдых тел.
  • Незаменимы как стабилизаторы высококонцентрированных дисперсных систем (суспензий, паст, эмульсий, пен).
  • Кроме того, они играют важную роль в биологических процессах и вырабатываются для «собственных нужд» живыми организмами.
  • Так, поверхностной активностью обладают вещества, входящие в состав жидкостей кишечно-желудочного тракта и крови животных, соков и экстрактов растений.

Воздействие ПАВ на человека

Дерматологическое действие


Подавляющее количество ПАВ при использовании имеет непосредственный контакт с кожей, поэтому следует обращать внимание на их дерматологическое действие.


Известно, что мыла при длительном контакте вызывают раздражение кожи, причём этоя явление более характерно для натриевых солей С8 – С10 насыщенных жирных кислот в сравнении с их высшими гомологами.


Алкилсульфаты с длиной жирной цепи менее С12 и алкиларилсульфонаты раздражают кожу сильнее, чем мыла.


Сульфоэтерифицированные масла и сульфоэфиры, а также продукты конденсации высших жирных кислот и белков не вызывают заметного раздражения кожи, поэтому многие очищающие и моющие композиции включают соединения этих типов.


По убыли раздражающего действия на кожу человека ПАВы можно расположить в следующий ряд:


Катионные > анионные > неионные .

Влияние на слизистую оболочку глаз


Растворы многих ПАВ при попадании в глаза вызывают болезненное ощущение , а при большей концентрации могут повредить глазную ткань.


По силе раздражающего действия на глаза основные группы ПАВ располагаются в том же порядке, что и по их влиянию на кожу.


ПАВ и гемолиз эритроцитов.


Существенным недостатком синтетических ПАВ является то, что внутревенное введение их растворов сопровождается гемолизом (разрушением) эритроцитов.


При этом оболочка эритроцитов разрушается или становится проницаемой для гемоглобина, который выходит из них в окружающую среду.


Гемоглоби́н - сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, клетках, отвечающих за перенос кислорода.


Гемолитическое действие ряда гомологов жирных сульфатов и алкилдиметилбензиламмония хлорида проявляется при концентрациях, более низких по сравнению с критической концентрацией мицеллообразования.


Гемолиз, вызываемый ПАВ, задерживается в присутствии холестерина и фосфолипидов.


Введённые в ток крови ПАВы взаимодействуют не только с эритроцитами, но и с другими составными её частями.


Так, полиоксиэтиленовый эфир алкилфенола в очень высокой степени повышает фагоцитозное действие лейкоцитов, а сульфонаты лигнина действуют как антикоагулянты.


Токсилогическое действие


Все классы ПАВ проходят тщательную проверку на токсичность.


Токсичность (от греч. toxikon - яд) - ядовитость, свойство некоторых химических соединений и веществ биологической природы при попадании в определенных количествах в живой организм (человека, животного и растения) вызывать нарушения его физиологических функций, в результате чего возникают симптомы отравления (интоксикации, заболевания), а при тяжелых - гибель.


В таблице ниже приведены данные об иследованиях некоторых синтетических ПАВ на токсичность:


ЛД50 - (полулетальная доза , также DL50 (от др.-греч. δόσις и лат. lētālis), также LD50 англ. lethal dose, 50 %) - средняя доза вещества, вызывающая гибель половины членов испытуемой группы. Один из наиболее широко применяемых показателей опасности ядовитых и умеренно-токсичных веществ.



Таким образом:

  • наиболее токсичными являются катионные ПАВ ,
  • менее токсичными – анионные и
  • наименее – неионогенные ПАВ.

Следует заметить, что величина LD50 в пределах данного класса ПАВ зависит от молекулярной структуры и от молекулярного веса.


Известно, что полиоксиэтилены с высоким молекулярным весом при приёме внутрь практически нетоксичны, тогда как их низшие гомологи, например диэтиленгликоль при введении с пищей белым крысам замедляли их рост, вызывали их дегенеративные изменения в печени и почках, появление в мочевом пузыре оксалатных камней и новообразований на слизистой оболочке.

Влияние ПАВ на окружающую среду.

В последние несколько десятилетий постоянно росло потребление синтетических моющих средств и соответственно происходило сокращение потребления мыла.


Это обстоятельство породило важную проблемму - проблемму очистки сточных вод .


Дело в том, что многие синтетические моющие средства, в отличие от мыл, не подвержены естественному биохимическому разложению и не не задерживаются фильтрующими установками, и это приводит не только к загрязнению рек и других водоёмов, но и к проникновению ПАВ в источники питьевой воды, что непосредственно влияет на здоровье человека.


Биохимическим разложением называется разложение органических веществ под действием ферментов, производимых бактериями и другими микроорганизмами.


Биоразложение протекает очень медленно, конечными продуктами его являются вода и диоксид углерода.


Для массового производства и потребления моющих средств необходимо применять такие ПАВ и другие моющие вещества, которые были бы подвержены сравнительно быстрому их распаду.


В настоящее время приняты законы, разрешающие производство и применение ПАВ для моющих средств, биоразлагаемых не менее чем на 80%.


Биоразлагаемость некоторых ПАВов.


Хорошей биоразлагаемостью (на 80-90%) обладают алкилбензолсульфонаты с неразветвлённой алкильной цепью (С10 -С14). Она увеличивается при добавлении в раствор глюкозы.


Биоразлагаемость алкилсульфонатов, полученных из нормальных парафинов, достигает 98%, олефинсульфонатов – 90-95% , у алкилсульфатов (С10-С18) – 97,9% .


Неиногенные ПАВ разлагаются легче, чем анионактивные, но их биоразлагаемость понижается с увеличением числа присоединённых групп этиленоксида и разветвлённости гидрофобной части молекулы.


Сульфаты неионогенных ПАВ, полученных на основе прямоцепочных жирных спиртов, легко разлагаются, и длина этиленоксидной цепи не влияет на степень и скорость разложения.


Разные подходы в защите окружающей среды


По данным ряда исследователей, для защиты окружающей среды при производстве и употреблении моющих средств наиболее рациональным путём является замена алкилбензолсульфонатов алкилсульфатами и алкилсульфонатами , а также применение натуральных жирных кислот и их производных, кукурузного крахмала и других, биоразлагаемость которых является стопроцентной.


Наличие моющих средств в сточных водах вызывает обильное пенообразование за счёт остаточных ПАВ, фосфатов и других компонентов моющих средств, что затрудняет биологическую очистку.


Но существует и другой подход, заключающийся в том, что введение в действие эффективных методов очистки сточных вод экономически целесообразнее, чем замена плохоразлагающихся компонентов моющих средств другими, менее эффективными в моющем действии.

Поверхностно-активные вещества (ПАВ) повсеместно используются в косметике. Благодаря им шампуни и гели для душа очищают кожу от грязи, а косметические эмульсии остаются стабильными, и не распадаются на жирную водную фазы. Все было бы прекрасно, но помимо полезных технических качеств у ПАВ есть и обратная сторона – они могут сушить и раздражать кожу.

1. ПАВ – это эмульгаторы и очищающие компоненты

Эмульгаторы – это компоненты, без которых нельзя обойтись, если производитель хочет создать эмульсию, состоящую из масла и воды. Без эмульгаторов она расслоится на две фазы, а это не только не эстетично выглядит, но и создает благоприятную среду для микробов, которые могут поселиться на границе водного и масляного слоя. Кроме того, меняется характер распределения активных компонентов, которые даже могут потерять свою активность.

Самыми сильными эмульгаторами являются ПАВ (поверхностно-активные вещества). Их главная задача – расщеплять грязь (жиры) при стирке, мытье волос, умывании кожи. Именно ПАВ образуют в очищающих продуктах пену.

2. ПАВ очищают кожу и волосы

ПАВ в составе мыл, шампуней, гелей для душа поглощаются на поверхности загрязнений (жир, грязь), встраиваются в них, дробят их на мелкие капли, облегчая, таким образом, удаление этих частиц. Проблема в том, что ПАВ не видят разницы между «ненужными жирами» и естественной жировой смазкой кожи. Поэтому любой ПАВ, который «хорошо очищает» кожу, может сделать её сухой и раздраженной.

3. ПАВ могут раздражать кожу

Когда ПАВ попадают на кожу, клетки рогового слоя эпидермиса разбухают, и увеличивается их проницаемость для активных компонентов. С одной стороны, чем сильнее набухает роговый слой, тем лучше и быстрее он очищается. Но с другой стороны, при высокой концентрации, ПАВ могут повреждать липиды рогового слоя. Кроме того, кожа становится проницаемой не только для полезных компонентов, но и для раздражающих – если вдруг они оказались в составе продукта.

4. ПАВ можно получить из трех источников

  • растительного сырья (натуральное происхождение)
  • из нефти и газа (минеральное происхождение)
  • синтезировать в лаборатории (синтетическое происхождение)

5. ПАВ бывают разные

Анионные ПАВ – одни из самых распространённых очищающих компонентов. Хорошо очищают даже в жесткой воде. Лаурил и лаурет сульфаты натрия (SLS, SLES) относятся к этой категории. В настоящее время в косметической промышленности используются анионные ПАВ нового поколения, которые не обладают таким сушащим эффектом, как SLS. Например, Sodium Lauroyl Sarcosinate, Sodium Lauroyl Oat Amino Acids.

Катионные ПАВ – обладают слабым моющим эффектом, однако могут раздражать кожу сильнее, чем анионные ПАВ. Поэтому их чаще всего используют в качестве смягчающей добавки и для снятия статического электричества в средствах, смывающихся с волос (Cetrimonium chloride, Quaternium-15)

Амфотерные ПАВ – обладают мягким очищающим воздействием, уменьшают агрессивное воздействие анионных ПАВ, улучшают пенообразование. Из группы амфотерных ПАВ чаще всего используют производные бетаина (cocoaminopropyl betaine). Получают амфотерные ПАВ из жирных кислот кокосового, пальмоядрового, подсолнечного, соевого и рапсового масел, а также гидролизаты коллагена, кератина, эластина и других белков.

Неионогенные ПАВ – обладают слабым раздражающим воздействием на кожу, они мало пенятся, поэтому их часто комбинируют с анионными ПАВ. В составе шампуней и кондиционеров их используют для придания волосам шелковистости и мягкости. Неионогенные ПАВ обладают наиболее полной биоразлагаемостью (Glyceryl Laurate, Decyl Glucoside)

Список некоторых мягких ПАВ, которые используются в натуральной косметике

Coco-Glucoside - Глюкозид кокоса
Мягкое пенящееся вещество, которое получают из высушенной мякоти кокоса и фруктового сахара. Используется в качестве пенящегося агента, кондиционера и эмульгатора. В средствах для волос – разглаживает структуру волос, придает объем. Побочных эффектов глюкозида кокоса не обнаружено, может использоваться для любого типа кожи и для детской косметики.

Lauryl Glucoside - Лаурилгликозид
Синтезируется из натурального сырья в процессе ректификации растительных жиров (кокосового масла и глюкозы). В косметических средствах выступает в роли эмульгатора, диспергатора, естественного пенообразователя, повышает вязкость консистенции. Оказывает мягкое очищающее действие, используется в детской продукции и средствах для интимной гигиены. В гелях, кремах очищает, смягчает кожу, шампуням обеспечивает легкий кондиционирующий эффект, облегчает последующую укладку волос.

Sodium Cocoamphoacetate - Натрия кокоамфоацетат
Поверхностно-активное вещество, полученное из жирных кислот кокосового масла (кокосовой кислоты). В косметологии используется в качестве пенообразователя, обладает мягкими моющими свойствами. Создает приятную консистенцию средства. Обычно используется в качестве компонента для очищающих жидких средств, гелей, шампуней. В средствах для волос – повышает эластичность, улучшает структуру поврежденных волос, придает блеск.

Sodium Cocoyl Glutamate - Натрия глутамат кокоил
Поверхностно-активное вещество, являющееся соединением глутаминовой кислоты.
В косметологии используется в качестве пенообразователя, мягкого моющего средства, эмульгатора. Часто используется в средствах для умывания и шампунях для волос, создает ощущение мягкости, увлажненности кожи, обладает кондиционирующим эффектом.

Sodium Lauroyl Sarcosinate - Лаурилсаркозинат натрия
Получают из саркозина – натуральной аминокислоты, содержащейся в овощах и фруктах.
В косметике часто используется в качестве мягкого пенящегося агента, сурфактанта, кондиционера. Мягкое очищающее средство, безопасное для кожи, в то же время эффективно удаляющее грязь, бактерии, кожный жир. Не раздражает даже чувствительную кожу. При использовании для ухода за волосами – возвращает им живость и сияние, бережно очищая и улучшая их структуру.

Sodium Lauryl Glucose Carboxylate - Лаурил глюкозид карбоксилаза
Натуральная альтернатива агрессивным ПАВам. Очень мягкий природный пенящийся агент, создающий однородную консистенцию продукта, получаемый реакцией кокосового и пальмового масла с сахаром и крахмалом. В косметике обычно используется в продуктах для умывания и очищения кожи, в шампунях для волос. Негативных и аллергических реакций при использовании данного вещества не обнаружено.

Sucrose Cocoate - Сахарозы Кокоат
Натуральное вещество, получаемое из жирных кислот кокосового масла и эфира сахарозы. Готовая жидкость имеет вязкую консистенцию и светло-желтый цвет, обладает выраженными увлажняющими и смягчающими свойствами. Кокоат сахарозы поглощает воду и при нанесении на кожу поддерживает в ней оптимальный уровень влажности.
Часто используется в очищающих средствах (гелях, пенах, молочке для снятия макияжа) и увлажняющих кремах.

Источники:
“Основы косметической химии”, Т. Пучковой
“Новая косметология”, А. Марголина, Е. Эрнандес

Или ККМ), с достижением которого при добавлении ПАВ в раствор концентрация на границе раздела фаз остаётся постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразование или агрегация). В результате такой агрегации образуются так называемые мицеллы. Отличительным признаком мицеллообразования служит помутнение раствора ПАВ. Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами.

Методы определения ККМ:

  • Метод поверхностного натяжения
  • Метод измерения краевого угла (угла смачивания) с тв. или жидкой поверхностью (Contact angle)
  • Метод вращающейся капли (Spindrop/Spinning drop)

Энциклопедичный YouTube

  • 1 / 5

    Как правило, ПАВ - органические соединения, имеющие амфифильное строение , то есть их молекулы имеют в своём составе полярную часть, гидрофильный компонент (функциональные группы -ОН, -СООН, -SOOOH, -O- и т. п., или, чаще, их соли -ОNa, -СООNa, -SOOONa и т. п.) и неполярную (углеводородную) часть, гидрофобный компонент. Примером ПАВ могут служить обычное мыло (смесь натриевых солей жирных карбоновых кислот - олеата , стеарата натрия и т. п.) и СМС (синтетические моющие средства), а также спирты , карбоновые кислоты , амины и т. п.

    Классификация ПАВ

    Применение высших жирных спиртов для производства поверхностно-активных веществ

    Класс ПАВ Вид ПАВ Химическая формула Реагент для синтеза Схема синтеза Источники
    Неионогенные ПАВ Алкоксилаты этоксилаты R−O−(CH 2 CH 2 O) n H окись этилена ROH + n(CH 2 CH 2)O → RO−(CH 2 CH 2 O) n H

    Реакция протекает в присутствии щёлочи при температуре до 160°С и давлении до 0,55МПа. Обычно используют C 9 -C 15 спирты в сочетании с 6-7 молями окиси этилена.

    :[стр. 31, 35] :[стр. 137-139]
    пропоксилаты R−O−(CH 2 CH(CH 3)O) n H окись пропилена
    бутоксилаты R−O−(CH 2 CH(C 2 H 5)O) n H окись бутилена
    Алкилгликозиды R−(O−C 6 H 10 O 5) n H глюкоза ROH + nC 6 C 12 O 6 → R−(O−C 6 H 10 O 5) n H+nH 2 O
    Реакция протекает в присутствии сульфокислот при температуре до 140°С. Другой вариант - предварительное получение бутиловых эфиров с последующей переэтерификацией. Число гликозидных групп колеблется от 1 до 3.
    :[стр. 38]
    :[стр. 149]
    Анионные ПАВ Карбоксиэтоксилаты R−O−(CH 2 CH 2 O) n СH 2 COOH хлоруксусная кислота RO(CH 2 CH 2 O) n H + ClCH 2 COOH → RO(CH 2 CH 2 O) n СH 2 COOH + HCl

    Реакция протекает в присутствии щёлочи, кислота выделяется подкислением водного раствора и отделением водно-солевой фазы.

    :[стр. 40]
    :[стр. 126-127]
    Фосфаты и полифосфаты ROP(OH) 2 O; (RO) 2 P(OH)O оксид фосфора(V) 3ROH + P 2 O 5 → ROP(OH) 2 O +(RO) 2 P(OH)O

    Добавление порошкообразного оксида фосфора к безводным спиртам в безводной среде при 50-70 °С и интенсивном перемешивании .

    :[стр. 54]
    :[стр. 122-123]
    Сульфосукцинаты ROC(O)CH 2 CH(SO 3 Na)COOH; ROC(O)CH 2 CH(SO 3 Na)COOR малеиновый ангидрид , сульфит натрия ROH + (COCH=CHCO)O → ROC(O)CH=CHCOOH
    ROC(O)CH=CHCOOH + Na 2 SO 3 → ROC(O)CH 2 CH(SO 3 Na)COONa
    Этерификация спиртов малиновым ангидридом (T до 100 °С) и дальнейшее присоединение к эфиру сульфита натрия пр нагревании.
    :[стр. 52-53]
    Алкилсульфаты R−O−SO 3 H серная кислота , оксид серы(VI) , хлорсульфоновая кислота ROH + SO 3 → ROSO 3 H
    Прямое сульфирование спиртов при последующей нейтрализации раствора щелочью.
    :[стр. 55-56]
    Алкилэфиросульфаты R−(CH 2 CH 2 O) n OSO 3 H

    Также в производстве ПАВ используются и некоторые другие спирты: глицерин (сложные эфиры с жирными кислотами - эмульгаторы), сорбитол (сорбитаны), моноэтаноламин и диэтаноламин (алканоламиды).

    Влияние ПАВ на компоненты окружающей среды

    ПАВ делятся на те, которые быстро разрушаются в окружающей среде и те, которые не разрушаются и могут накапливаться в организмах в недопустимых концентрациях. Один из основных негативных эффектов ПАВ в окружающей среде - понижение поверхностного натяжения . Например в океане изменение поверхностного натяжения приводит к снижению показателя удерживания CO 2 и кислорода в массе воды. Только немногие ПАВ считаются безопасными (алкилполиглюкозиды), так как продуктами их деградации являются углеводы . Однако при адсорбировании ПАВ на поверхности частичек земли/песка степень/скорость их деградации снижаются многократно. Так как почти все ПАВ, используемые в промышленности и домашнем хозяйстве, имеют положительную адсорбцию на частичках земли, песка, глины, при нормальных условиях они могут высвобождать (десорбировать) ионы тяжёлых металлов , удерживаемые этими частичками, и тем самым повышать риск попадания данных веществ в организм человека.