Физиологический минимум белка для взрослых составляет. Роль белков в питании, нормы, азотистый баланс, коэффициент изнашивания,физиологический белковый минимум

Азотистый баланс азотистое равновесие.

Остальные аминокислоты легко синтезируются в клетках и называются заменимыми. К ним относят глицин, аспарагиновую кислоту, аспарагин, глутаминовую кислоту, глутамин, серии, пролин, аланин.

Однако безбелковое питание заканчивается гибелью организма. Исключение даже одной незаменимой аминокислоты из рациона ведёт к неполному усвоению других аминокислот и сопровождается развитием отрицательного азотистого баланса, истощением, остановкой роста и нарушениями функций нервной системы.

При безбелковой диете в сутки выделяется 4гр азота,что составляет 25гр белка (КОЭФ-Т ИЗНАШИВАНИЯ).

Физиологический белковый минимум- минимальное количество белков в пище необходимое для поддержания азотистого равновесия- 30-50 г/сут.

ПЕРЕВАРИВАНИЕ БЕЛКОВ В ЖКТ. ХАРАКТЕРИСТИКА ПЕПТИДАЗ ЖЕЛУДКА, ОБРАЗОВАНИЕ И РОЛЬ СОЛЯНОЙ КИСЛОТЫ.

В пищевых продуктах содержание свободных аминокислот очень мало. Подавляющее их количество входит в состав белков, которые гидролизуются в ЖКТ под действием ферментов протеаз). Субстратная специфичность этих ферментов заключается в том, что каждый из них с наибольшей скоростью расщепляет пептидные связи, образованные определёнными аминокислотами. Протеазы, гидролизующие пептидные связи внутри белковой молекулы, относят к группе эндопептидаз. Ферменты, относящиеся к группе экзопептидаз, гидролизуют пептидную связь, образованную концевыми аминокислотами. Под действием всех протеаз ЖКТ белки пищи распадаются на отдельные аминокислоты, которые затем поступают в клетки тканей.



Образование и роль соляной кислоты

Основная пищеварительная функция желудка заключается в том, что в нём начинается переваривание белка. Существенную роль в этом процессе играет соляная кислота. Белки, поступающие в желудок, стимулируют выделение гистамина и группы белковых гормонов -гастринов , которые, в свою очередь, вызывают секрецию НСI и профермента - пепсиногена. НСI образуется в обкладочных клетках желудочных желёз

Источником Н + является Н 2 СО 3 , которая образуется в обкладочных клетках желудка из СО 2 , диффундирующего из крови, и Н 2 О под действием фермента карбоангидразы

Диссоциация Н 2 СО 3 приводит к образованию бикарбоната, который с участием специальных белков выделяется в плазму. Ионы С1 - поступают в просвет желудка через хлоридный канал.

рН снижается до 1,0-2,0.

Под действием НСl происходит денатурация белков пищи, не подвергшихся термической обработке, что увеличивает доступность пептидных связей для протеаз. НСl обладает бактерицидным действием и препятствует попаданию патогенных бактерий в кишечник. Кроме того, соляная кислота активирует пепсиноген и создаёт оптимум рН для действия пепсина.

Пепсиноген - белок, состоящий из одной полипептидной цепи. Под действием НСl он превращается в активный пепсин В процессе активации в результате частичного протеолиза от N-конца молекулы пепсиногена отщепляются аминокислотных остатка, которые содержат почти все положительно заряженные аминокислоты, имеющиеся в пепсиногене. Таким образом, в активном пепсине преобладающими оказываются отрицательно заряженные аминокислоты, которые участвуют в конформационных перестройках молекулы и формировании активного центра. Образовавшиеся под действием НСl активные молекулы пепсина быстро активируют остальные молекулы пепсиногена (аутокатализ). Пепсин в первую очередь гидролизует пептидные связи в белках, образованные ароматическими аминокислотами (фенилаланин, триптофан, тирозин) Пепсин - эндопептидаза, поэтому в результате его действия в желудке образуются более короткие пептиды, но не свободные аминокислоты.



У детей грудного возраста в желудке находится фермент реннин (химозин) , вызывающий свёртывание молока. В желудке взрослых людей реннина нет, молоко у них створаживается под действием НСl и пепсина.

ещё одна протеаза - гастриксин. Все 3 фермента (пепсин, реннин и гастриксин) сходны по первичной структуре

КЕТОГЕННЫЕ И ГЛИКОГЕННЫЕ АМИНОКИСЛОТЫ. АНАПЛЕРОТИЧЕСКИЕ РЕАКЦИИ, СИНТЕЗ ЗАМЕНИМЫХ АМИНОКИСЛОТ (ПРИМЕР).

Катаболизм аминок-т сводится к образованию пируват, ацетил-КоА, α-кетоглутарат, сукцинил-КоА, фумарат, оксалоацетат гликогенных аминокислоты - превращаются в пируват и промежуточные продукты ЦТК и образуют в конечном итоге оксалоацетат, могут использоваться впроцессе глюконеогенеза.

кетогенные аминок-ты в процессе катаболизма превращаются в ацетоацетат (Лиз, Лей) или ацетил-КоА (Лей) и могут использоваться в синтезе кетоновых тел.

гликокетогенными аминокислоты используется и для синтеза глюкозы, и для синтеза кетоновых тел, так как в процессе их катаболизма образуются 2 продукта - определённый метаболит цитратного цикла и ацетоацетат (Три, Фен, Тир) или ацетил-КоА (Иле).

Анаплеротические реакции - безазотистые остатки аминокислот используются для восполнения того количества метаболитов общего пути катаболизма, которое затрачивается на синтез биологически активных веществ.

Фермент пируваткарбоксилаза (кофермент - биотин), катализирующий эту реакцию, обнаружен в печени и мышцах.

2. Аминокислоты → Глутамат → α-Кетоглутарат

под действием глутаматдегидрогеназы или аминотрансфераз.

3.

Пропионил-КоА, а затем и сукцинил-КоА могут образоваться также при распаде высших жирных кислот с нечётным числом атомов углерода

4. Аминокислоты → Фумарат

5. Аминокислоты → Оксалоацетат

Реакции 2, 3 происходят во всех тканях (кроме печени и мышц), где отсутствует пируваткарбоксилаза.

VII. БИОСИНТЕЗ ЗАМЕНИМЫХ АМИНОКИСЛОТ

В организме человека возможен синтез восьми заменимых аминокислот: Ала, Асп, Асн, Сер, Гли, Глу, Глн, Про. Углеродный скелет этих аминокислот образуется из глюкозы. α-Аминогруппа вводится в соответствующие α-кетокислоты в результате реакций трансаминирования.Универсальным донором α-аминогруппы служит глутамат.

Путём трансаминирования α-кетокислот, образующихся из глюкозы, синтезируются аминокислоты

Глутамат также образуется при восстановительном аминировании α-кетоглутарата глутаматдегидрогеназой.

ТРАНСАМИНИРОВАНИЕ: СХЕМА ПРОЦЕССА, ФЕРМЕНТЫ, БИОРОЛЬ. БИОРОЛЬ АЛАТ И АСАТ И КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ИХ ОПРЕДЕЛЕНИЯ В СЫВОРОТКЕ КРОВИ.

Трансаминирование - реакция переноса α-аминогруппы с ак-ы на α-кетокислоту, в результате чего образуются новая кетокислота и новая ак. процесс трансаминирования легко обратим

Реакции катализируют ферменты аминотрансферазы, коферментом которых служит пиридоксальфосфат (ПФ)

Аминотрансферазы обнаружены как в цитоплазме, так и в митохондриях клеток эукариот. В клетках человека найдено более 10 аминотрансфераз, отличающихся по субстратной специфичности. Вступать в реакции трансаминирования могут почти все аминокислоты, за исключением лизина, треонина и пролина.

  • На первой стадии к пиридоксальфосфату в активном центре фермента с помощью альдиминной связи присоединяется аминогруппа от первого субстрата – ак-ы. Образуются комплекс фермент-пиридокса-минфосфат и кетокислота - первый продукт реакции. Этот процесс включает промежуточное образование 2 шиффовых оснований.
  • На второй стадии комплекс фермент-пиридоксаминфосфат соединяется с кетокислотой и через промежуточное образование 2 шиффовых оснований передаёт аминогруппу на кетокислоту. В результате фермент возвращается в свою нативную форму, и образуется новая аминокислота - второй продукт реакции. Если альдегидная группа пиридоксальфосфата не занята аминогруппой субстрата, то она образует шиффово основание с ε-аминогруппой радикала лизина в активном центре фермента

Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных - глутамат, аланин, аспартат и соответствующие им кетокислоты - α-кетоглутарат, пируват и оксалоацетат. Основным донором аминогруппы служит глутамат.

Наиболее распространёнными ферментами в большинстве тканей млекопитающих являются: АЛТ (АлАТ) катализирует реакцию транса-минирования между аланином и α-кетоглутаратом. Локализован этот фермент в цитозоле клеток многих органов, но наибольшее его количество обнаружено в клетках печени и сердечной мышцы. ACT (АсАТ) катализирует реакцию трансами-нирования между аепартатом и α-кетоглутаратом. образуются оксалоацетат и глутамат. Наибольшее его количество обнаружено в клетках сердечной мышцы и печени. органоспецифичность этих ферментов.

В норме в крови активность этих ферментов составляет 5-40 Е/л. При повреждении клеток соответствующего органа ферменты выходят в кровь, где активность их резко повышается. Поскольку ACT и АЛТ наиболее активны в клетках печени, сердца и скелетных мышц, их используют для диагностики болезней этих органов. В клетках сердечной мышцы количество ACT значительно превышает количество АЛТ, а в печени - наоборот. Поэтому особенно информативно одновременное измерение активности обоих ферментов в сыворотке крови. Соотношение активностей ACT/АЛТ называют "коэффициент де Ритиса". В норме этот коэффициент равен 1,33±0,42. При инфаркте миокарда активность ACT в крови увеличивается в 8-10 раз, а АЛТ - в 2,0 раза.

При гепатитах активность АЛТ в сыворотке крови увеличивается в ∼8-10 раз, a ACT - в 2-4 раза.

Синтез меланинов.

Виды меланинов

Реакция активация метионина

Активной формой метионина является S-аденозилметионин (SAM) - сульфониевая форма аминокислоты, образующаяся в результате присоединения метионина к молекуле аденозина. Аденозин образуется при гидролизе АТФ.

Эту реакцию катализирует фермент метионин аденозилтрансфераза, присутствующий во всех типах клеток. Структура (-S + -CH 3) в SAM - нестабильная группировка, определяющая высокую активность метильной группы (отсюда термин "активный метионин"). Эта реакция уникальна для биологических систем, так как, по-видимому, является единственной известной реакцией, в результате которой освобождаются все три фосфатных остатка АТФ. Отщепление метильной группы от SAM и перенос её на соединение-акцептор катализируют ферменты метилтрансферазы. SAM в ходе реакции превращается в S-аденозилгомоцистеин (SAT).

Синтез креатина

Креатин необходим для образования в мышцах высокоэнергетического соединения - кре-атинфосфата. Синтез креатина идёт в 2 стадии с участием 3 аминокислот: аргинина, глицина и метионина. В почках образуется гуанидинацетат при действии глицинамидинотрансферазы. Затем гуанидинацетат транспортируется в печень, где происходит реакция его метилирования.

Реакции трансметилирования используются также для:

  • синтеза адреналина из норадреналина;
  • синтеза анзерина из карнозина;
  • метилирования азотистых оснований в нуклеотидах и др.;
  • инактивации метаболитов (гормонов, медиаторов и др.) и обезвреживания чужеродных соединений, включая и лекарственные препараты.

Инактивация биогенных аминов также происходит:

метилированием с участием SAM под действием метилтрансфераз. Таким образом могут инактивироваться различные биогенные амины, но чаще всего происходит инактивация гастамина и адреналина. Так, инактивация адреналина происходит путём метилирования гидроксильной группы в ортоположении

ТОКСИЧНОСТЬ АММИАКА. ЕГО ОБРАЗОВАНИЕ И ОБЕЗВРЕЖИВАНИЕ.

Катаболизм аминокислот в тканях происходит постоянно со скоростью ∼100 г/сут. При этом в результате дезаминирования аминокислот освобождается большое количество аммиака. Значительно меньшие количества его образуются при дезаминировании биогенных аминов и нуклеотидов. Часть аммиака образуется в кишечнике в результате действия бактерий на пищевые белки (гниение белков в кишечнике) и поступает в кровь воротной вены. Концентрация аммиака в крови воротной вены существенно больше, чем в общем кровотоке. В печени задерживается большое количество аммиака, что поддерживает низкое содержание его в крови. Концентрация аммиака в крови в норме редко превышает 0,4-0,7 мг/л (или 25-40 мкмоль/л

Аммиак - токсичное соединение. Даже небольшое повышение его концентрации оказывает неблагоприятное действие на организм, и прежде всего на ЦНС. Так, повышение концентрации аммиака в мозге до 0,6 ммоль вызывает судороги. К симптомам гипераммониемии относят тремор, нечленораздельную речь, тошноту, рвоту, головокружение, судорожные припадки, потерю сознания. В тяжёлых случаях развивается кома с летальным исходом. Механизм токсического действия аммиака на мозг и организм в целом, очевидно, связан с действием его на несколько функциональных систем.

  • Аммиак легко проникает через мембраны в клетки и в митохондриях сдвигает реакцию, катализируемую глутаматдегидрогеназой, в сторону образования глугамата:

α-Кетоглутарат + NADH + Н + + NH 3 → Глутамат + NAD + .

Уменьшение концентрации α-кетоглутарата вызывает:

· угнетение обмена аминокислот (реакции транса-минирования) и, следовательно, синтеза из них нейромедиаторов (ацетилхолина, дофамина и др.);

· гипоэнергетическое состояние в результате снижения скорости ЦТК.

Недостаточность α-кетоглутарата приводит к снижению концентрации метаболитов ЦТК, что вызывает ускорение реакции синтеза оксалоа-цетата из пирувата, сопровождающейся интенсивным потреблением СО 2 . Усиленное образование и потребление диоксида углерода при гипераммониемии особенно характерны для клеток головного мозга. Повышение концентрации аммиака в крови сдвигает рН в щелочную сторону (вызывает алкалоз). Это, в свою очередь, увеличивает сродство гемоглобина к кислороду, что приводит к гипоксии тканей, накоплению СО 2 и гипоэнергетическому состоянию, от которого главным образом страдает головноймозг. Высокие концентрации аммиака стимулируют синтез глутамина из глутамата в нервной ткани (при участии глутаминсинтетазы):

Глутамат + NH 3 + АТФ → Глутамин + АДФ + Н 3 Р0 4 .

· Накопление глутамина в клетках нейроглии приводит к повышению осмотического давления в них, набуханию астроцитов и в больших концентрациях может вызвать отёк мозга.Снижение концентрации глутамата нарушает обмен аминокислот и нейромедиаторов, в частности синтез у-аминомасляной кислоты (ГАМК), основного тормозного медиатора. При недостатке ГАМК и других медиаторов нарушается проведение нервного импульса, возникают судороги. Ион NH 4 + практически не проникает через цитоплазматические и митохондриальные мембраны. Избыток иона аммония в крови способен нарушать трансмембранный перенос одновалентных катионов Na + и К + , конкурируя с ними за ионные каналы, что также влияет на проведение нервных импульсов.

Высокая интенсивность процессов дезаминирования аминокислот в тканях и очень низкий уровень аммиака в крови свидетельствуют о том, что в клетках активно происходит связывание аммиака с образованием нетоксичных соединений, которые выводятся из организма с мочой. Эти реакции можно считать реакциями обезвреживания аммиака. В разных тканях и органах обнаружено несколько типов таких реакций. Основной реакцией связывания аммиака, протекающей во всех тканях организма, является 1.) синтез глутамина под действием глутамин-синтетазы:

Глутаминсинтетаза локализована в митохондриях клеток, для работы фермента необходим кофактор - ионы Mg 2+ . Глутаминсинтетаза - один из основных регуляторных ферментов обмена аминокислот и аллостерически ингибируется АМФ, глюкозо-6-фосфатом, а также Гли, Ала и Гис.

В клетках кишечника под действием фермента глутаминазы происходит гидролитическое освобождение амидного азота в виде аммиака:

Образовавшийся в реакции глутамат подвергается трансаминированию с пируватом. ос-Аминогруппа глутаминовой кислоты переносится в состав аланина:


Глутамин - основной донор азота в организме. Амидный азот глутамина используется для синтеза пуриновых и пиримидиновых нуклеотидов, аспарагина, аминосахаров и других соединений.

МЕТОД КОЛ-В ОПРЕДЕЛЕНИЯ МОЧЕВИНЫ В СЫВОРОТКЕ КРОВИ

В биологических жидкостях М. определяют с помощью газометрических методов, прямых фотометрических методов, основанных на реакции М. с различными веществами с образованием эквимолекулярных количеств окрашенных продуктов, а также ферментативных методов с использованием главным образом фермента уреазы. Газометрические методы основаны на окислении М. гипобромитом натрия в щелочной среде NH 2 -СО-NH 2 + 3NaBrO → N 2 + CO 2 + 3NaBr + 2H 2 O. Объем газообразного азота измеряют с помощью специального аппарата, чаще всего аппарата Бородина. Однако этот метод обладает низкой специфичностью и точностью. Из фотометрических наиболее распространены методы, основанные на реакции М. с диацетилмонооксимом (реакция Ферона).

Для определения мочевины в сыворотке крови и моче используют унифицированный метод, основанный на реакции М. с диацетилмонооксимом в присутствии тиосемикарбазида и солей железа в кислой среде. Другим унифицированным методом определения М. является уреазный метод: NH 2 -СО-NH 2 → уреаза NH 3 +CO 2 . Выделившийся аммиак образует с гипохлоритом натрия и фенолом индофенол, имеющий синий цвет. Интенсивность окраски пропорциональна содержанию М. в исследуемой пробе. Уреазная реакция высокоспецифична, для исследования берут лишь 20 мкл сыворотки крови, разведенной в соотношении 1: 9 раствором NaCI (0,154 М). Иногда вместо фенола используют салицилат натрия; сыворотку крови разводят следующим образом: к 10 мкл сыворотки крови добавляют 0,1 мл воды или NaCI (0,154 М). Ферментативная реакция в обоих случаях протекает при 37° в течение 15 и 3-3 1 / 2 мин соответственно.

Производные М., в молекуле которой атомы водорода замещены кислотными радикалами, носят название уреидов. Многие уреиды и некоторые их галогензамещенные производные в медицине используют в качестве лекарственных средств. К уреидам относятся, например, соли барбитуровой кислоты (малонилмочевины), аллоксан (мезоксалилмочевина); гетероциклическим уреидом является Мочевая кислота.

ОБЩАЯ СХЕМА РАСПАДА ГЕМА. «ПРЯМОЙ» И «НЕПРЯМОЙ» БИЛИРУБИН, КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ЕГО ОПРЕДЕЛЕНИЯ.

Гем(гемоксигеназа)-биливердин(биливердинредуктаза)-билирубин(УДФ-глюкуранилтрансфераза)-билирубинмоноглюкуронид(УД-глюкуронилтрансфераза)-билирубиндиглюкуронид

В нормальном состоянии концентрация общего билирубина в плазме составляет 0,3-1 мг/дл (1,7-17 мкмоль/л), 75% от общего количества билирубина находится в неконъюгированной форме (непрямой билирубин). В клинике конъ-югированный билирубин называют прямым, потому что он водорастворим и может быстро взаимодействовать с диазореагентом, образуя соединение розового цвета, - это прямая реакция Ван дер Берга. Неконъюгированный билирубин гидрофобен, поэтому в плазме крови содержится в комплексе с альбумином и не реагирует с диазореактивом до тех пор, пока не добавлен органический растворитель, например этанол, который осаждает альбумин. Неконъюгированный илирубин, взаимодействующий с азокрасителем только после осаждения белка, называют непрямым билирубином.

У больных с печёночно-клеточной патологией, сопровождающейся длительным повышением концентрации конъюгированного билирубина, в крови обнаруживают третью форму плазменного билирубина, при котором билирубин ковалентно связан с альбумином, и поэтому его невозможно отделить обычным способом. В некоторых случаях до 90% общего содержания билирубина крови может находиться в этой форме.

МЕТОДЫ ОБНАРУЖЕНИЯ ГЕМА ГЕМОГЛОБИНА: ФИЗИЧЕСКИЙ (СПЕКТРАЛЬНЫЙ АНАЛИЗ ГЕМОГЛОБИНА И ЕГО ПРОИЗВОДНЫХ); ФИЗИКО-ХИМИЧЕСКИЙ (ПОЛУЧЕНИЕ КРИСТАЛЛОВ СОЛЯНОКИСЛОГО ГЕМИНА).

Спектральный анализ гемоглобина и его производных. Использование спектрографических методов при рассмотрении раствора оксигемоглобина выявляет в желто-зеленой части спектра между фраунгоферовскими линиями D и Е две системные полосы поглощения, у восстановленного гемоглобина в той же части спектра имеется лишь одна широкая полоса. Различия в поглощении излучения гемоглобином и оксигемоглобином послужили основой для метода изучения степени насыщения крови кислородом - оксигемометрии.

Карбгемоглобин по своему спектру близок к оксигемоглобину, однако при добавлении восстанавливающего вещества у карбгемоглобина появляются две полосы поглощения. Спектр метгемоглобина характеризуется одной узкой полосой поглощения слева на границе красной и желтой части спектра, второй узкой полосой на границе желтой и зеленой зон, наконец, третьей широкой полосой в зеленой части спектра

Кристаллы гемина или солянокислого гема-тина. С поверхности пятна соскабливается на предметное стекло и измельчается несколько крупинок. К ним добавляются 1-2 крупинки поваренной соли и 2-3 капли ледяной уксус- ной к-ты. Все накрывают покровным стеклом и осторожно, не доводя до кипения, нагревают. Присутствие крови доказывается появлением микрокристаллов буро-желтого цвета в виде ромбических табличек. Если кристаллы плохо сформированы, то имеют вид конопляного семени. Получение кристаллов гемина безусловно доказывает присутствие в исследуемом объекте крови. Отрицательный результат пробы не имеет значения. Примесь жира,ржавчина затрудняют получение кристаллов гемина

АКТИВНЫЕ ФОРМЫ КИСЛОРОДА: СУПЕРОКСИД АНИОН, ПЕРОКСИД ВОДОРОДА, ГИДРОКСИЛЬНЫЙ РАДИКАЛ, ПЕРОКСИНИТРИТ. ИХ ОБРАЗОВАНИЕ, ПРИЧИНЫ ТОКСИЧНОСТИ. ФИЗИОЛОГИЧЕСКАЯ РОЛЬ АФК.

В ЦПЭ поглощается около 90% поступающего в клетки О 2 . Остальная часть О 2 используется в других ОВР. Ферменты, участвующие ОВР с использованием О2, делятся на 2 группы: оксидазы и оксигеназы.

Оксидазы используют молекулярный кислород только в качестве акцептора электронов, восстанавливая его до Н 2 О или Н 2 О 2 .

Оксигеназы включают один (монооксигеназы) или два (диоксигеназы) атома кислорода в образующийся продукт реакции.

Хотя эти реакции не сопровождаются синтезом АТФ, они необходимы для многих специфических реакций в обмене аминокислот), синтезе жёлчных кислот и стероидов), в реакциях обезвреживания чужеродных веществ в печени

В большинстве реакций с участием молекулярного кислорода его восстановление происходит поэтапно с переносом одного электрона на каждом этапе. При одноэлектронном переносе происходит образование промежуточных высокореактивных форм кислорода.

В невозбуждённом состоянии кислород нетоксичен. Образование токсических форм кислорода связано с особенностями его молекулярной структуры. О 2 содержит 2 неспаренных электрона, которые располагаются на разных орбиталях. Каждая из этих орбиталей может принять ещё один электрон.

Полное восстановление О 2 происходит в результате 4 одноэлектронных переходов:

Супероксид, пероксид и гидроксильный радикал - активные окислители, что представляет серьёзную опасность для многих структурных компонентов клетки

Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, инициируя цепные окислительные реакции

Повреждающее действие свободных радикалов на компоненты клетки. 1 - разрушение белков; 2 - повреждение ЭР; 3 - разрушение ядерной мембраны и повреждение ДНК; 4 - разрушение мембран митохондрий; проникновение в клетку воды и ионов.

Образование супероксида в ЦПЭ. "Утечка" электронов в ЦПЭ может происходить при переносе электронов с участием коэнзима Q. При восстановлении убихинон превращается в анион-радикал семихинона. Этот радикал нефермента-тивно взаимодействует с О 2 с образованием супероксидного радикала.

Большая часть активных форм кислорода образуется при переносе электронов в ЦПЭ, прежде всего, при функционировании QH 2 -дегидрогеназного комплекса. Это происходит в результате неферментативного переноса ("утечки") электронов с QH 2 на кислород (

на этапе переноса электронов при участии цитохромоксидазы (комплекс IV) "утечка" электронов не происходит благодаря наличию в ферменте специальных активных центров, содержащих Fe и Сu и восстанавливающих О 2 без освобождения промежуточных свободных радикалов.

В фагоцитирующих лейкоцитах в процессе фагоцитоза усиливаются поглощение кислорода и образование активных радикалов. Активные формы кислорода образуются в результате активации NADPH-оксидазы, преимущественно локализованной на наружной стороне плазматической мембраны, инициируя так называемый "респираторный взрыв" с образованием активных форм кислорода

Защита организма от токсического действия активных форм кислорода связана с наличием во всех клетках высокоспецифичных ферментов: супероксиддисмутазы, каталазы, глутатион-пероксидазы, а также с действием антиоксидантов.

ОБЕЗВРЕЖИВАНИЕ АКТИВНЫХ ФОРМ КИСЛОРОДА. ФЕРМЕНТНАЯ АНТИОКСИДАНТНАЯ СИСТЕМА (КАТАЛАЗА, СУПЕРОКСИДДИСМУТАЗА, ГЛУТАТИОНПЕРОКСИДАЗА, ГЛУТАТИОНРЕДУКТАЗА). СХЕМЫ ПРОЦЕССОВ, БИОРОЛЬ, МЕСТО ПРОТЕКАНИЯ.

Супероксиддисмутаза катализирует реакцию дисмутации супероксидных анион – радикалов:
О2.- + О2.- = О2 + Н 2О2
В ходе реакции образовался пероксид водорода, он способен инактивировать СОД, поэтому супероксиддисмутаза всегда «работает» в паре скаталазой, которая быстро и эффективно расщепляет пероксид водорода на абсолютно нейтральные соединения.

Каталаза (КФ 1.11.1.6) – гемопротеин, который катализирует реакцию обезвреживания пероксида водорода, образующегося в результате реакции дисмутации супероксидного радикала:
2H2O2 = 2H2O + O2

Глутатионпероксидазакатализирует реакции, в которых фермент восстанавливает пероксид водорода до воды, а также восстановление органических гидропероксидов (ROOH) до гидроксипроизводных, и в результате переходит в окисленную дисульфидную форму GS-SG:
2GSH + H2O2 = GS-SG + H2O
2GSH + ROOH = GS-SG + ROH +H2O

Глутатионпероксидаза обезвреживает не только H2O2, но и разные органические липидные пероксилы, которые образуются в организме при активации ПОЛ.

Глутатионредуктаза (КФ 1.8.1.7) – флавопротеин с простетической группой флавинадениндинуклеотидом, состоит из двух идентичных субъединиц. Глутатионредуктаза катализирует реакцию восстановления глутатиона из окисленной его формы GS-SG, а все другие ферменты глутатионсинтетаз используют его:
2NADPH + GS-SG = 2NADP + 2 GSH

Это классический цитозольный фермент всех эукариот.Глутатионтрансфераза катализирует реакцию:
RX + GSH = HX + GS-SG

ФАЗА КОНЪЮГАЦИИ В СИСТЕМЕ ОБЕЗВРЕЖИВАНИЯ ТОКСИЧЕСКИХ ВЕЩЕСТВ. ВИДЫ КОНЪЮГАЦИИ (ПРИМЕРЫ РЕАКЦИЙ С ФАФС, УДФГК)

Конъюгация - вторая фаза обезвреживание веществ, в ходе которой происходит присоединение к функциональным группам, образующимся на первом этапе, других молекул или групп эндогенного происхождения, увеличивающих гидрофильность и уменьшающих токсичность ксенобиотиков

1. Участие трансфераз в реакциях конъюгации

УДФ-глюкуронилтрансферазы. Локализированные в основном в ЭР уридин-дифосфат (УДФ)-глюкуронилтрансферазы присоединяют остаток глюкуроновой кислоты к молекуле вещества, образованного в ходе мик-росомального окисления

В общем виде: ROH + УДФ-С6Н9О6 = RO-C6H9O6 + УДФ.

Сульфотрансферазы. Цитоплазматические cульфотрансферазы катализируют реакцию конъюгации, в ходе которой остаток серной кислоты (-SO3H) от 3"-фосфоаденозин-5"-фосфосульфата (ФАФС) присоединяется к фенолам, спиртам или аминокислотам

Реакция в общем виде: ROH + ФАФ-SO3H = RO-SO3H + ФАФ.

Ферменты сульфотрансферазы и УДФ-глюкуронилтрансферазы участвуют в обезвреживании ксенобиотиков, инактивации лекарств и эндогенных биологически активных соединений.

Глутатионтрансферазы. Особое место среди ферментов, участвующих в обезвреживании ксенобиотиков, инактивации нормальных метаболитов, лекарств, занимают глутатионтрансферазы (ГТ). Глутатионтрансферазы функционируют во всех тканях и играют важную роль в инактивации собственных метаболитов: некоторых стероидных гормонов, билирубина, жёлчных кислот, В клетке ГТ в основном локализованы в цитозоле, но имеются варианты ферментов в ядре и митохондриях.

Глутатион - трипептид Глу-Цис-Гли (остаток глутаминовой кислоты присоединён к цис-теину карбоксильной группой радикала). ГТ обладают широкой специфичностью к субстратам, общее количество которых превышает 3000. ГТ связывают очень многие гидрофобные вещества и инактивируют их, но химической модификации с участием глугатиона подвергаются только те, которые имеют полярную группу. То есть субстратами служат вещества, которые, с одной стороны, имеют электрофильный центр (например, ОН-группу), а с другой стороны - гидрофобные зоны. Обезвреживание, т.е. химическая модификация ксенобиотиков с участием ГТ, может осуществляться тремя различными способами:

путём конъюгации субстрата R с глутатионом (GSH): R + GSH → GSRH,

в результате нуклеофильного замещения: RX + GSH → GSR + НХ,

восстановления органических пероксидов до спиртов: R-HC-O-OH + 2 GSH → R-HC-OH + GSSG + H2O

В реакции: ООН - гидропероксидная группа, GSSG - окисленный глутатион.

Сисгема обезвреживания с участием ГТ и глутатиона играет уникальную роль в формировании резистентности организма к самым различным воздействиям и является наиболее важным защитным механизмом клетки. В ходе биотрансформации некоторых ксенобиотиков под действием ГТ образуются тиоэфиры (конъюгаты RSG), которые затем превращаются в меркаптаны, среди которых обнаружены токсические продукты. Но конъюгаты GSH с большинством ксенобиотиков менее реакционно-способны и более гидрофильны, чем исходные вещества, а поэтому менее токсичны и легче выводятся из организма

ГТ своими гидрофобными центрами могут не-ковалентно связывать огромное количество ли-пофильных соединений (физическое обезвреживание), предотвращая их внедрение в липидный слой мембран и нарушение функций клетки. Поэтому ГТ иногда называют внутриклеточным альбумином.

ГТ могут ковалентно связывать ксенобиотики, являющиеся сильными электролитами. Присоединение таких веществ - "самоубийство" для ГТ, но дополнительный защитный механизм для клетки.

Ацетилтрансферазы, метилтрансферазы

Ацетилтрансферазы катализируют реакции конъюгации - переноса ацетильного остатка от ацетил-КоА на азот группы -SO2NH2, например в составе сульфаниламидов. Мембранные и цитоплазматические метилтрансферазы с участием SAM метилируют группы -Р=О, -NH2 и SH-группы ксенобиотиков.

Роль эпоксидгидролаз в образовании диолов

Во второй фазе обезвреживания (реакции конъюгации) принимают участие и некоторые другие ферменты. Эпоксидгидролаза (эпоксидгидратаза) присоединяет воду к эпоксидам бензола, бензпирена и другим полициклическим углеводородам, образованным в ходе первой фазы обезвреживания, и превращает их в диолы (рис. 12-8). Эпоксиды, образовавшиеся при микросомальном окислении, являются канцерогенами. Они обладают высокой химической активностью и могут участвовать в реакциях неферментативного алкилирования ДНК, РНК, белков Химические модификации этих молекул могут привести к перерождению нормальной клетки в опухолевую.

РОЛЬ БЕЛКОВ В ПИТАНИИ, НОРМЫ, АЗОТИСТЫЙ БАЛАНС, КОЭФФИЦИЕНТ ИЗНАШИВАНИЯ,ФИЗИОЛОГИЧЕСКИЙ БЕЛКОВЫЙ МИНИМУМ. БЕЛКОВАЯ НЕДОСТАТОЧНОСТЬ.

АК содержат почти 95% всего азота, поэтому именно они поддерживают азотистый баланс организма. Азотистый баланс - разница между количеством азота, поступающего с пищей, и количеством выделяемого азота. Если количество поступающего азота равно количеству выделяемого, то наступает азотистое равновесие. Такое состояние бывает у здорового человека при нормальном питании. Азотистый баланс может быть положительным (азота поступает больше, чем выводится) у детей, у пациентов. Отрицательный азотистый баланс (выделение азота преобладает над его поступлением) наблюдают при старении, голодании и во время тяжёлых заболеваний. При без белковой диете азотистый баланс становится отрицательным. Минимальное количество белков в пище, необходимое для поддержания азотистого равновесия, соответствует 30-50 г/cyt, оптимальное же количество при средней физической нагрузке составляет ∼100-120 г/сут.

аминокислоты, синтез которых сложен и неэкономичен для организма, очевидно, выгоднее получать с пищей. Такие аминокислоты называют незаменимыми. К ним относят фенилаланин, метионин, треонин, триптофан, валин, лизин, лейцин, изолейцин.

Две аминокислоты - аргинин и гистидин называют частично заменимыми. - тирозин и цистеин - условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина.

Остальные аминокислоты легко синтезируются в клетках и называются заменимыми. К ним относят глицин, аспарагиновую кислоту, аспарагин, глутаминовую кислоту, глутамин, серии, про

Лекция № 1. Переваривание белков в желудочно-кишечном тракте. Азотистый баланс. Нормы белка в питании.

План лекции:

1. Биологическая роль белков.

2. Азотистый баланс и его формы.

3. Нормы белка в питании (коэффициент изнашивания, белковый минимум и белковый оптимум). Критерии полноценности пищевого белка.

4. Переваривание белков в ЖКТ. Характеристика ферментов желудочного, поджелудочного и кишечного сока. Роль соляной кислоты в переваривании белков. Механизм активации протеолитических ферментов.

5. Гормоны ЖКТ (строение, биологическая роль).

6. Процессы гниения белков в толстом кишечнике. Обезвреживание токсичных продуктов гниения белков. Образование индикана. Реакция определения индикана в моче, КДЗ.

Биологическая роль белков.

Белки выполняют следующие функции: пластическую (структурную), каталитическую, защитную, транспортную, регуляторную, энергетическую.

Азотистый баланс и его формы.

Азотистый баланс (А.Б.) – это разница между общим азотом, поступающим в организм с пищей и общим азом, выводимым из организма с мочой. Формы А.Б.: 1) азотистое равновесие (N пищи = N мочи+кала); 2) положительный азотистый баланс (N пищи ˃ N мочи+кала); 3) отрицательный А.Б. (N пищи ˂ N мочи+кала).

Нормы белка в питании (коэффициент изнашивания, белковый минимум и белковый оптимум). Критерии полноценности пищевого белка.

Белки состоят из 20-ти протеиногенных аминокислот.

Незаменимые аминокислоты – не могут синтезироваться в тканях человека и должны ежедневно поступать в организм с пищей. К ним относятся: валин, лейцин, изолейцин, метионин, треонин, лизин, триптофан, фенилаланин.

Частично незаменимые аминокислоты (аргинин и гистидин) могут синтезироваться в организме человека, но не покрывают суточную потребность, особенно в детском возрасте.

Заменимые аминокислоты могут синтезироваться в организме человека из промежуточных соединений обмена веществ.

Критерии полноценности пищевого белка: 1) биологическая ценность – это аминокислотный состав и соотношение отдельных аминокислот; 2) усвояемость белка в ЖКТ.

Полноценный белок содержит все незаменимые аминокислоты в оптимальных пропорциях и легко гидролизуется ферментами ЖКТ. Наибольшей биологической ценностью обладают белки яйца и молока. Они же легко усваиваются. Из растительных белков первое место занимают белки сои.

Коэффициент изнашивания – то количество эндогенного белка, который ежесуточно распадается до конечных продуктов. В среднем составляет 3,7 г азота/сутки, или 23 г белка/сутки.

Физиологический белковый минимум – то количество белка в пище, которое позволяет поддерживать азотистое равновесие в состоянии покоя. Для взрослого здорового человека – 40-50 г/сутки.

Белковый оптимум – то количество белка в пище, которое поддерживает полноценную жизнедеятельность. Для здорового взрослого человека – 80-100 г/сутки (1,5 г на кг массы тела).

Переваривание белков в ЖКТ. Характеристика ферментов желудочного, поджелудочного и кишечного сока. Роль соляной кислоты в переваривании белков. Механизм активации протеолитических ферментов.

Расщепление белков в ЖКТ идет гидролитическим способом. Ферменты называются – протеазы или пептидазы. Сам процесс гидролиза белков носит название – протеолиз. Пептидазы ЖКТ делятся на 2 группы:

1) эндопептидазы - катализируют гидролиз внутренних пептидных связей; к ним относятся ферменты: пепсин (желудочный сок), трипсин и химотрипсин (поджелудочный сок):

2) экзопептидазы - катализируют гидролиз концевых пептидных связей; к ним относятся ферменты: карбоксипептидызы (поджелудочный сок), аминопептидазы, три- и дипептидазы (кишечный сок).

Протеолитические ферменты синтезируются и секретируются в просвет кишечника в виде проферментов – неактивных форм. Активация происходит путем ограниченного протеолиза – отщепления пептида-ингибитора. Гидролиз белков в ЖК: идет постепенно белок → пептиды → аминокислоты.

Роль соляной кислоты: активирует пепсин, создает кислотность (1,5-2), денатурирует белки, оказывает бактерицидное действие.

Всасывание свободных аминокислот в кровь идет путем активного транспорта с участие специализированных белков-переносчиков.

Белки являются незаменимым компонентом пищи. В отличие от белков - углеводы и жиры не являются незаменимыми компонентами пищи. Ежесуточно потребляется около 100 граммов белков взрослым здоровым человеком. Пищевые белки – это главный источник азота для организма. В смысле экономическом белки являются самым дорогим пищевым компонентом. Поэтому очень важным в истории биохимии и медицины было установление норм белка в питании.

В опытах Карла Фойта впервые были установлены нормы потребления пищевого белка - 118г/сутки, углеводов - 500г/сутки, жиров 56г/сутки. М.Рубнер первым определил, что 75% азота в организме находится в составе белков. Он составил азотистый баланс (определил, сколько азота человек теряет за сутки и сколько азота прибавляется).

У взрослого здорового человека наблюдается азотистое равновесие – «нулевой азотистый баланс» (суточное количество выведенного из организма азота соответствует количеству усвоенного).

Положительный азотистый баланс (суточное количество выведенного из организма азота меньше, чем количество усвоенного). Наблюдается только в растущем организме или при восстановлении белковых структур (например, в периоде выздоровления при тяжелых заболеваниях или при наращивании мышечной массы).

Отрицательный азотистый баланс (суточное количество выведенного из организма азота выше, чем количество усвоенного). Наблюдается при белковой недостаточности в организме. Причины: недостаточное количество белков в пище; заболевания, сопровождающиеся повышенным разрушением белков.

В истории биохимии проводились эксперименты, когда человека кормили только углеводами и жирами («безбелковая диета»). В этих условиях измеряли азотистый баланс. Через несколько дней выведение азота из организма уменьшалось до определенного значения, и после этого поддерживалось длительное время на постоянном уровне: человек терял ежесуточно 53 мг азота на кг веса в сутки (примерно 4 г азота в сутки). Это количество азота соответствует примерно 23-25г белка в сутки. Эту величину назвали "КОЭФФИЦИЕНТ ИЗНАШИВАНИЯ". Затем ежедневно добавляли в рацион 10г белка, и выведение азота при этом повышалось. Но все равно наблюдался отрицательный азотистый баланс. Тогда в пищу стали добавлять 40-45-50 граммов белка в сутки. При таком содержании белка в пище наблюдался нулевой азотистый баланс (азотистое равновесие). Эту величину (40-50 граммов белка в сутки) назвали ФИЗИОЛОГИЧЕСКИЙ МИНИМУМ БЕЛКА.

В 1951 году были предложены нормы белка в питании: 110-120 граммов белка в сутки.

В настоящее время установлено, что 8 аминокислот являются незаменимыми. Суточная потребность в каждой незаменимой аминокислоте - 1-1.5 гр., а всего организму необходимо 6-9 граммов незаменимых аминокислот в сутки. Содержание незаменимых аминокислот в разных пищевых продуктах различается. Позтому физиологический минимум белка может быть разным для разных продуктов.

Сколько необходимо съедать белка для поддержания азотистого равновесия? 20 гр. яичного белка, либо 26-27 гр. белков мяса или молока, либо 30 гр. белков картофеля, либо 67 гр. белков пшеничной муки. В яичном белке содержится полный набор аминокислот. При питании растительными белками необходимо гораздо больше белка для восполнения физиологического минимума. Потребности в белке у женщин (58 граммов в сутки) меньше, чем у мужчин (70 г белка в сутки) – данные нормативов США.

Оглавление темы "Обмен веществ и энергии. Питание. Основной обмен.":
1. Обмен веществ и энергии. Питание. Анаболизм. Катаболизм.
2. Белки и их роль в организме. Коэффициент изнашивания по Рубнеру. Положительный азотистый баланс. Отрицательный азотистый баланс.
3. Липиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин.
4. Бурый жир. Бурая жировая ткань. Липиды плазмы крови. Липопротеины. ЛПНП. ЛПВП. ЛПОНП.
5. Углеводы и их роль в организме. Глюкоза. Гликоген.


8. Роль обмена веществ в обеспечении энергетических потребностей организма. Коэффициент фосфорилирования. Калорический эквивалент кислорода.
9. Способы оценки энергетических затрат организма. Прямая калориметрия. Непрямая калориметрия.
10. Основной обмен. Уравнения для расчета величины основного обмена. Закон поверхности тела.

Белки и их роль в организме. Коэффициент изнашивания по Рубнеру. Положительный азотистый баланс. Отрицательный азотистый баланс.

Роль белков, жиров, углеводов, минеральных веществ и витаминов в метаболизме

Потребность организма в пластических веществах может быть удовлетворена тем минимальным уровнем их поступления с пищей, который уравновешивает потери структурных белков, липидов и углеводов. Эти потребности индивидуальны и зависят от таких факторов, как возраст человека, состояние здоровья, интенсивность и вид труда.

Человек получает в составе пищевых продуктов заключенные в них пластические вещества , минеральные вещества и витамины.

Белки и их роль в организме

Белки в организме находятся в состоянии непрерывного обмена и обновления. У здорового взрослого человека количество распавшегося за сутки белка равно количеству вновь синтезированного. Животные существа могут усваивать азот только в составе аминокислот, поступающих в организм с белками пищи. Десять аминокислот из 20 (валин, лейцин, изолейцин, лизин, метионин, триптофан, треонин, фенилаланин, аргинин и гистидин)в случае их недостаточного поступления с пищей не могут быть синтезированы в организме. Эти аминокислоты называют незаменимыми. Другие десять аминокислот (заменимые) не менее важны для жизнедеятельности, чем незаменимые, но в случае недостаточного поступления с пищей заменимых аминокислот они могут синтезироваться в организме. Важным фактором обмена белков организма является повторное использование (реутилизация) аминокислот, образовавшихся при распаде одних белковых молекул, для синтеза других.

Скорость распада и обновления белков организма различна. Полупериод распада гормонов пептидной природы составляет минуты или часы, белков плазмы крови и печени -около 10 сут, белков мышц - около 180 сут. В среднем все белки организма человека обновляются за 80 сут. О суммарном количестве белка, подвергшегося распаду за сутки, судят по количеству азота, выводимого из организма человека. В белке содержится около 16 % азота (т. е. в 100 г белка- 16 г азота). Таким образом, выделение организмом 1 г азота соответствует распаду 6,25 г белка. За сутки из организма взрослого человека выделяется около 3,7 г азота. Из этих данных следует, что масса белка, подвергшегося за сутки полному разрушению, составляет 3,7 х 6,25 = 23 г, или 0,028-0,075 г азота на 1 кг массы тела в сутки (коэффициент изнашивания по Рубнеру ).


Если количество азота, поступающего в организм с пищей, равно количеству азота, выводимого из организма, принято считать, что организм находится в состоянии азотистого равновесия . В случаях, когда в организм поступает азота больше, чем его выделяется, говорят о положительном азотистом балансе (задержке, ретенции азота). Такие состояния бывают у человека при увеличении массы мышечной ткани, в период роста организма, беременности, выздоровления после тяжелого истощающего заболевания.

Состояние, при котором количество выводимого из организма азота превышает его поступление в организм, называют отрицательным азотистым балансом . Оно имеет место при питании неполноценными белками, когда в организм не поступают какие-либо из незаменимых аминокислот , при белковом голодании или при полном голодании.

Белки , использующиеся в организме в первую очередь в качестве пластических веществ, в процессе их разрушения освобождают энергию для синтеза в клетках АТФ и образования тепла.

Роль белков в питании, нормы, азотистый баланс, коэффициент изнашивания, физиологический белковый минимум. Белковая недостаточность.

Азотистый баланс - разница между количеством азота, поступающего с пищей, и количеством выделяемого азота (преимущественно в виде мочевины и аммонийных солей). Если количество поступающего азота равно количеству выделяемого, то наступает азотистое равновесие. Такое состояние бывает у здорового человека при нормальном питании. Азотистый баланс может быть положительным (азота поступает больше, чем выводится) у детей, а также у пациентов, выздоравливающих после тяжёлых болезней. Отрицательный азотистый баланс (выделение азота преобладает над его поступлением) наблюдают при старении, голодании и во время тяжёлых заболеваний. При безбелковой диете азотистый баланс становится отрицательным. Соблюдение подобной диеты в течение недели приводит к тому, что количество выделяемого азота перестаёт увеличиваться и стабилизируется примерно на величине 4 г/сут. Такое количество азота содержится в 25 г белка. Значит, при белковом голодании в сутки в организме расходуется около 25 г собственных белков тканей. Минимальное количество белков в пище, необходимое для поддержания азотистого равновесия, соответствует 30-50 г/cyt, оптимальное же количество при средней физической нагрузке составляет ∼100-120 г/сут.

Нормы белка в питании.

Для поддержания азотистого равновесия достаточно употреблять 30-50 г белков в сутки. Однако такое количество не обеспечивает сохранения работоспособности и здоровья человека. Принятые нормы белкового питания для взрослых и детей учитывают климатические условия, профессию, условия труда и другие факторы. Взрослый человек при средней физической нагрузке должен получать 100-120 г белков в сутки. При тяжёлой физической работе эта норма увеличивается до 130-150 г. Детям до 12 лет достаточно 50-70 г белков в сутки. При этом подразумевается, что в пишу входят разнообразные белки животного и растительного происхождения.

Белковая недостаточность

Известно, что даже длительное исключение из рациона человека жиров или углеводов не вызывает тяжёлых расстройств здоровья. Однако безбелковое питание (особенно продолжительное) вызывает серьёзные нарушения обмена и неизбежно заканчивается гибелью организма. Исключение даже одной незаменимой аминокислоты из пищевого рациона ведёт к неполному усвоению других аминокислот и сопровождается развитием отрицательного азотистого баланса, истощением, остановкой роста и нарушениями функций нервной системы. Конкретные проявления недостаточности одной из аминокислот были выявлены у крыс, которым скармливали белки, лишённые определённой аминокислоты. Так, при отсутствии цистеина (или цистина) возникал острый некроз печени, гистидина - катаракта; отсутствие метионина приводило к анемии, ожирению и циррозу печени, облысению и геморрагии в почках. Исключение лизина из рациона молодых крыс сопровождалось анемией и внезапной гибелью (этот синдром отсутствовал у взрослых животных).

Недостаточность белкового питания приводит к заболеванию - "квашиоркор", что в переводе означает "золотой (или красный) мальчик". Заболевание развивается у детей, которые лишены молока и других животных белков, а питаются исключительно растительной пищей, включающей бананы, таро, просо и, чаще всего, кукурузу. Квашиоркор характеризуется задержкой роста, анемией, гипопротеинемией (часто сопровождающейся отёками), жировым перерождением печени. У лиц негроидной расы волосы приобретают красно-коричневый оттенок. Часто это заболевание сопровождается атрофией клеток поджелудочной железы. В результате нарушается секреция панкреатических ферментов и не усваивается даже то небольшое количество белков, которое поступает с пищей. Происходит поражение почек, вследствие чего резко увеличивается экскреция свободных аминокислот с мочой. Без лечения смертность детей составляет 50-90%. Даже если дети выживают, длительная недостаточность белка приводит к необратимым нарушениям не только физиологических функций, но и умственных способностей. Заболевание исчезает при своевременном переводе больного на богатую белком диету, включающую большие количества мясных и молочных продуктов. Один из путей решения проблемы - добавление в пищу препаратов лизина.

2. Переваривание белков в ЖКТ. Характеристика пептидаз желудка, образование и роль соляной кислоты.

В пищевых продуктах содержание свободных аминокислот очень мало. Подавляющее их количество входит в состав белков, которые гидролизуются в ЖКТ под действием ферментов протеаз (пептидщцролаз). Субстратная специфичность этих ферментов заключается в том, что каждый из них с наибольшей скоростью расщепляет пептидные связи, образованные определёнными аминокислотами. Протеазы, гидролизующие пептидные связи внутри белковой молекулы, относят к группе эндопептидаз. Ферменты, относящиеся к группе экзопептидаз, гидролизуют пептидную связь, образованную концевыми аминокислотами. Под действием всех протеаз ЖКТ белки пищи распадаются на отдельные аминокислоты, которые затем поступают в клетки тканей.

Образование и роль соляной кислоты

Основная пищеварительная функция желудка заключается в том, что в нём начинается переваривание белка. Существенную роль в этом процессе играет соляная кислота. Белки, поступающие в желудок, стимулируют выделение гистамина и группы белковых гормонов -гастринов , которые, в свою очередь, вызывают секрецию НСI и профермента - пепсиногена. НСI образуется в обкладочных клетках желудочных желёз в ходе реакций.

Источником Н + является Н 2 СО 3 , которая образуется в обкладочных клетках желудка из СО 2 , диффундирующего из крови, и Н 2 О под действием фермента карбоангидразы (карбонатдегидра-тазы):

Н 2 О + СО 2 → Н 2 СО 3 → НСО 3 - + H +

Диссоциация Н 2 СО 3 приводит к образованию бикарбоната, который с участием специальных белков выделяется в плазму в обмен на С1 - , и ионов Н + , которые поступают в просвет желудка путём активного транспорта, катализируемого мембранной Н + /К + -АТФ-азой. При этом концентрация протонов в просвете желудка увеличивается в 10 6 раз. Ионы С1 - поступают в просвет желудка через хлоридный канал.

Концентрация НСl в желудочном соке может достигать 0,16 М, за счёт чего значение рН снижается до 1,0-2,0. Приём белковой пищи часто сопровождается выделением щелочной мочи за счёт секреции большого количества бикарбоната в процессе образования НСl.

Под действием НСl происходит денатурация белков пищи, не подвергшихся термической обработке, что увеличивает доступность пептидных связей для протеаз. НСl обладает бактерицидным действием и препятствует попаданию патогенных бактерий в кишечник. Кроме того, соляная кислота активирует пепсиноген и создаёт оптимум рН для действия пепсина.

· Связанная соляная кислота - НСl, связанная с белками и продуктами их переваривания. Значения связанной НСl у здоровых людей - 20-30 ТЕ.

· Свободная НСl - соляная кислота, не связанная с компонентами желудочного сока. Значения свободной НСl в норме - 20-40 ТЕ. рН желудочного сока в норме - 1,5-2,0.

Характеристика пептидаз поджелудочной железы и тонкого кишечника. Защита клеток от действия пептидаз.

Рис. 9-23. Пути биосинтеза заменимых аминокислот.

Амиды глутамин и аспарагин синтезируются из соответствующих дикарбоновых аминокислот Глу и Асп (см. схему А).

  • Серин образуется из 3-фосфоглицерата - промежуточного продукта гликолиза, который окисляется до 3-фосфопирувата и затем трансаминируется с образованием се-рина (см. схему Б).
  • Существует 2 пути синтеза глицина:

1) из серина с участием производного фолиевой кислоты в результате действия се-риноксиметилтрансферазы:

2) в результате действия фермента глицинсинтазы в реакции:

  • Пролин синтезируется из глутамата в цепи обратимых реакций. Эти же реакции используются и при катаболизме пролита (см. схему В на с. 494).

Кроме восьми перечисленных заменимых аминокислот, в организме человека могут синтезироваться ещё четыре аминокислоты.

Частично заменимые аминокислоты Apr и Гис синтезируются сложным путём в небольших количествах. Большая их часть должна поступать с пищей.

  • Синтез аргинина происходит в реакциях орнитинового цикла (см. выше подраздел IV);
  • Гистидин синтезируется из АТФ и рибозы. Часть имидазольного цикла гистидина - N=CH-NH- образуется из пуринового ядра аденина, источником которого служит АТФ, остальная часть молекулы - из атомов рибозы. При этом образуется 5-фосфорибозиламин, который кроме синтеза гистидина необходим для синтеза пуринов.

Для синтеза условно заменимых аминокислот тирозина и цистеина требуются незаменимые аминокислоты фенилаланин и метионин соответственно (см. подразделы VIII и IX).

Рис. 9-22. Включение безазотистого остатка аминокислот в общий путь катаболизма.

процессе глюконеогенеза. Такие аминокислоты относят к группе гликогенных аминокислот.

Некоторые аминокислоты в процессе катаболизма превращаются в ацетоацетат (Лиз, Лей) или ацетил-КоА (Лей) и могут использоваться в синтезе кетоновых тел. Такие аминокислоты называют кетогенными.

Ряд аминокислот используется и для синтеза глюкозы, и для синтеза кетоновых тел, так как в процессе их катаболизма образуются 2 продукта - определённый метаболит цитратного цикла и ацетоацетат (Три, Фен, Тир) или ацетил-КоА (Иле). Такие аминокислоты называют смешанными, илигликокетогенными (рис. 9-22, табл. 9-5).

Анаплеротические реакции

Безазотистые остатки аминокислот используются для восполнения того количества метаболитов общего пути катаболизма, которое затрачивается на синтез биологически активных веществ. Такие реакции называют анаплеротическими. На рисунке 9-22 выделены пять анаплеротических реакций:

Фермент пируваткарбоксилаза (кофермент - биотин), катализирующий эту реакцию, обнаружен в печени и мышцах.

2. Аминокислоты → Глутамат → α-Кетоглутарат

Превращение происходит во многих тканях под действием глутаматдегидрогеназы или аминотрансфераз.

3.

Пропионил-КоА, а затем и сукцинил-КоА могут образоваться также при распаде высших жирных кислот с нечётным числом атомов углерода (см. раздел 8).

4. Аминокислоты → Фумарат

5. Аминокислоты → Оксалоацетат

Реакции 2, 3 происходят во всех тканях (кроме печени и мышц), где отсутствует пируваткарбоксилаза, а реакции 4 и 5 - в основном в печени. Реакции 1 и 3 (рис. 9-22) - основные анаплеротические реакции.

Оксидаза L-аминокислот

В печени и почках обнаружен фермент оксидаза L-аминокислот, способный дезаминировать некоторые L-аминокислоты (см. схему в конце стр.).

Коферментом в данной реакции выступает FMN. Однако вклад оксидазы L-аминокислот в дезаминирование, очевидно, незначителен, так как оптимум её действия лежит в щелочной среде (рН 10,0). В клетках, где рН среды близок к нейтральному, активность фермента очень низка.

Оксидаза D-аминокислот также обнаружена в почках и печени. Это FAD-зависимый фермент. Оптимум рН этой оксидазы лежит в нейтральной среде, поэтому фермент более активен, чем оксидаза L-аминокислот. Роль оксидазы D-аминокислот невелика, так как количество D-изомеров в организме крайне мало, потому что в белки пищи и белки тканей человека и животных входят только природные L-аминокислоты. Вероятно, оксидаза D-аминокислот способствует их превращению в соответствующие L-изомеры (рис. 9-8).

10. Трансаминирование: схема процесса, ферменты, биороль. Биороль АдАТ и АсАТ и клиническое значение их определения в сыворотке крови.

Трансаминирование

Трансаминирование - реакция переноса α-аминогруппы с аминокислоты на α-кетокислоту, в результате чего образуются новая кетокислота и новая аминокислота. Константа равновесия для большинства таких реакций близка к единице (К р ~1,0), поэтому процесс трансаминирования легко обратим (см. схему А).

Реакции катализируют ферменты аминотрансферазы, коферментом которых служит пиридоксальфосфат (ПФ) - производное витамина В 6 (пиридоксина, см. раздел 3) (см. схему Б).

Аминотрансферазы обнаружены как в цитоплазме, так и в митохондриях клеток эукариот. Причём митохондриальные и цитоплазматические формы ферментов различаются по физико-химическим свойствам. В клетках человека найдено более 10 аминотрансфераз, отличающихся по субстратной специфичности. Вступать в реакции трансаминирования могут почти все аминокислоты,за исключением лизина, треонина и пролина.

Схема А

Механизм реакции

Аминотрансферазы - классический пример ферментов, катализирующих реакции, протекающие по механизму типа "пинг-понг" (см. раздел 2). В таких реакциях первый продукт должен уйти из активного центра фермента до того, как второй субстрат сможет к нему присоединиться.

Активная форма аминотрансфераз образуется в результате присоединения пиридоксальфосфата к аминогруппе лизина прочной альдиминной связью (рис. 9-6). Лизин в положении 258 входит в состав активного центра фермента. Кроме того, между ферментом и пиридоксальфосфатом образуются ионные связи с участием заряженных атомов фосфатного остатка и азота в пиридиновом кольце кофермента.

Последовательность реакций трансаминирования представлена ниже.

  • На первой стадии к пиридоксальфосфату в активном центре фермента с помощью альдиминной связи присоединяется аминогруппа от первого субстрата - аминокислоты. Образуются комплекс фермент-пиридокса-минфосфат и кетокислота - первый продукт реакции. Этот процесс включает промежуточное образование 2 шиффовых оснований.
  • На второй стадии комплекс фермент-пиридоксаминфосфат соединяется с кетокислотой (вторым субстратом) и снова через промежуточное образование 2 шиффовых оснований передаёт аминогруппу на кетокислоту. В результате фермент возвращается в свою нативную форму, и образуется новая аминокислота - второй продукт реакции. Если альдегидная группа пиридоксальфосфата не занята аминогруппой субстрата, то она образует шиффово основание (альдимин) с ε-аминогруппой радикала лизина в активном центре фермента (см. схему на с. 471).

Орнитиновый цикл

Мочевина - основной конечный продукт азотистого обмена, в составе которого из организма выделяется до 90% всего выводимого азота (рис. 9-15). Экскреция мочевины в норме составляет ∼25 г/сут. При повышении количества потребляемых с пищей белков экскреция мочевины увеличивается. Мочевина синтезируется только в печени, что было установлено ещё в опытах И.Д. Павлова. Поражение печени и нарушение синтеза мочевины приводят к повышению содержания в крови и тканях аммиака и аминокислот (в первую очередь, глутамина и аланина). В 40-х годах XX века немецкие биохимики Г. Кребс и К. Гензелейт установили, что синтез мочевины представляет собой циклический процесс, состоящий из нескольких стадий, ключевым соединением которого, замыкающим цикл, является орнитин. Поэтому процесс синтеза мочевины получил название "орнитиновый цикл", или "цикл Кребса-Гензелейта".

Реакции синтеза мочевины

Мочевина (карбамид) - полный амид угольной кислоты - содержит 2 атома азота. Источником одного из них является аммиак, который в печени связывается с диоксидом углерода с образованием карбамоилфосфата под действием карбамоилфосфатсинтетазы I (см. схему А ниже).

В следующей реакции аргининосукцинатсинтетаза связывает цитруллин с аспартатом и образует аргининосукцинат (аргининоянтарную кислоту). Этот фермент нуждается в ионах Mg 2+ . В реакции затрачивается 1 моль АТФ, но используется энергия двух макроэргических связей. Аспартат - источник второго атома азота мочевины (см. схему А на с. 483).

Аргинин подвергается гидролизу под действием аргиназы, при этом образуются орнитин и мочевина. Кофакторами аргиназы являются ионы Са 2+ или Мn 2+ . Высокие концентрации орнитина и лизина, являющихся структурными аналогами аргинина, подавляют активность этого фермента:

Суммарное уравнение синтеза мочевины:

СО 2 + NH 3 + Аспартат + 3 АТФ + 2 Н 2 О → Мочевина + Фумарат + 2 (АДФ + Н 3 Р0 4) + АМФ + H 4 P 2 O 7 .

Аммиак, используемый карбамоилфосфатсинтетазой I, поставляется в печень с кровью ворот-вены. Роль других источников, в том числе гсительного дезаминирования глутаминовой эты в печени, существенно меньше.

Аспартат, необходимый для синтеза аргининокцината, образуется в печени путём трансаминирования

аланина с оксалоацетатом. Алании поступает главным образом из мышц и клеток кишечника. Источником оксалоацетата, необходимого для этой реакции, можно считать превращение фумарата, образующегося в реакциях орнитинового цикла. Фумарат в результате двух реакций цитратного цикла превращается в оксалоацетат, из которого путём трансаминирования образуется аспартат (рис. 9-17). Таким образом, с орнитиновым циклом сопряжён цикл регенерации аспартата из фумарата. Пиру ват, образующийся в этом цикле из аланина, используется для глюконеогенеза.

Ещё одним источником аспартата для орнитинового цикла является Трансаминирование глутамата с оксалоацетатом.

Альбинизм

Причина метаболического нарушения - врождённый дефект тирозиназы. Этот фермент катализирует превращение тирозина в ДОФА в меланоцитах. В результате дефекта тирозиназы нарушается синтез пигментов меланинов.

Клиническое проявление альбинизма (от лат. albus - белый) - отсутствие пигментации кожи и волос. У больных часто снижена острота зрения, возникает светобоязнь. Длительное пребывание таких больных под открытым солнцем приводит к раку кожи. Частота заболевания 1:20 000.

Фенилкетонурия

В печени здоровых людей небольшая часть фенилаланина (∼10%) превращается в фенил-лактат и фенилацетилглутамин (рис. 9-30).

Этот путь катаболизма фенилаланина становится главным при нарушении основного пути - превращения в тирозин, катализируемого фенил-аланингидроксилазой. Такое нарушение сопровождается гиперфенилаланинемией и повышением в крови и моче содержания метаболитов альтернативного пути: фенилпирувата, фенилацетата, фениллактата и фенилацетилглу-тамина. Дефект фенилаланингидроксилазы приводит к заболеванию фенилкетонурия (ФКУ). Выделяют 2 формы ФКУ:

· Классическая ФКУ - наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы, которые приводят к снижению активности фермента или полной его инактивации. При этом концентрация фенилаланина повышается в крови в 20-30 раз (в норме - 1,0-2,0 мг/дл), в моче - в 100-300 раз по сравнению с нормой (30 мг/дл). Концентрация фенилпирувата и фениллактата в моче достигает 300-600 мг/дл при полном отсутствии в норме.

· Наиболее тяжёлые проявления ФКУ - нарушение умственного и физического развития, судорожный синдром, нарушение пигментации. При отсутствии лечения больные не доживают до 30 лет. Частота заболевания - 1:10 000 новорождённых. Заболевание наследуется по аутосомно-рецессивному типу.

· Тяжёлые проявления ФКУ связаны с токсическим действием на клетки мозга высоких концентраций фенилаланина, фенилпирувата, фениллактата. Большие концентрации фенилаланина ограничивают транспорт тирозина и триптофана через гематоэнцефаличеекий барьер и тормозят синтез нейро-медиаторов (дофамина, норадреналина, серотонина).

· Вариантная ФКУ (коферментзависимая гиперфенилаланинемия) - следствие мутаций в генах, контролирующих метаболизм Н 4 БП. Клинические проявления - близкие, но не точно совпадающие с проявлениями классической ФКУ. Частота заболевания - 1-2 случая на 1 млн новорождённых.

· Н 4 БП необходим для реакций гидроксилирования не только фенилаланина, но также тирозина и триптофана, поэтому при недостатке этого кофермента нарушается метаболизм всех 3 аминокислот, в том числе и синтез ней-ромедиаторов. Заболевание характеризуется тяжёлыми неврологическими нарушениями и ранней смертью ("злокачественная" ФКУ).

Прогрессирующее нарушение умственного и физического развития у детей, больных ФКУ, можно предотвратить диетой с очень низким содержанием или полным исключением фенилаланина. Если такое лечение начато сразу после рождения ребёнка, то повреждение мозга предотвращается. Считается, что ограничения в питании могут быть ослаблены после 10-летнего возраста (окончание процессов миелиниза-ции мозга), однако в настоящее время многие педиатры склоняются в сторону "пожизненной диеты".

Для диагностики ФКУ используют качественные и количественные методы обнаружения патологических метаболитов в моче, определение концентрации фенилаланина в крови и моче. Дефектный ген, ответственный за фенилкетонурию, можно обнаружить у фенотипически нормальных гетерозиготных носителей с помощью теста толерантности к фенилаланину. Для этого обследуемому дают натощак ∼10 г фенилаланина в виде раствора, затем через часовые интервалы берут пробы крови, в которых определяют содержание тирозина. В норме концентрация тирозина в крови после фенилаланиновой нагрузки значительно выше, чем у гетерозиготных носителей гена фежилкетонурии. Этот тест используется в генетической консультации для определения риска рождения больного ребёнка. Разработана схема скрининга для выявления новорождённых детей с ФКУ. Чувствительность теста практически достигает 100%.

Строение гема

Гем состоит из иона двухвалентного железа и порфирина (рис. 13-1). В основе -структуры порфиринов находится порфин. Порфин представляет собой четыре пиррольных кольца, связанных между собой метеновыми мостиками (рис. 13-1). В зависимости от структуры заместителей в кольцах пирролов различают несколько типов порфиринов: протопорфирины, этиопорфирины, мезо-порфирины и копропорфирины. Протопорфирины - предшественники всех других типов порфиринов.

Гемы разных белков могут содержать разные типы порфиринов (см. раздел 6). В теме гемоглобина находится протопорфирин IX, который имеет 4 метальных, 2 винильных радикала и 2 остатка пропионовой кислоты. Железо в теме находится в восстановленном состоянии (Fe +2) и связано двумя ковалентными и двумя координационными связями с атомами азота пиррольных колец. При окислении железа гем превращается в гематин (Fe 3+). Наибольшее количество гема содержат эритроциты, заполненные гемоглобином, мышечные клетки, имеющие миоглобин, и клетки печени из-за высокого содержания в них цитохрома Р 450 .

Регуляция биосинтеза гема

Регуляторную реакцию синтеза гема катализирует пиридоксальзависимый фермент аминолевулинатсинтаза. Скорость реакции регулируется аллостерически и на уровне трансляции фермента.

Аллостерическим ингибитором и корепрессором синтеза аминолевулинатсинтазы является гем (рис. 13-5).

В ретикулоцитах синтез этого фермента на этапе трансляции регулирует железо. На участке инициации мРНК, кодирующей фермент, имеется

Рис. 13-5. Регуляция синтеза гема и гемоглобина. Гем по принципу отрицательной обратной связи ингибирует аминолевулинатсинтазу и аминолевулинатдегидратазу и является индуктором трансляции α- и β-цепей гемоглобина.

последовательность нуклеотидов, образующая шпилечную петлю, которая называется железочувствительным элементом (от англ, iron-responsive element, IRE) (рис. 13-6).

При высоких концентрациях железа в клетках оно образует комплекс с остатками цистеина регуляторного железосвязывающего белка. Взаимодействие железа с регуляторным железосвязывающим белком вызывает снижение сродства этого белка к IRE-элементу мРНК, кодирующей аминолевулинатсинтазу, и продолжение трансляции (рис. 13-6, А). При низких концентрациях железа железосвязывающий белок присоединяется к железо-чувствительному элементу, находящемуся на 5"-нетранслируемом конце мРНК, и трансляция аминолевулинатсинтазы тормозится (рис. 13-6, Б).

Аминолевулинатдегидратаза также аллостерически ингибируется гемом, но так как активность этого фермента почти в 80 раз превышает активность аминолевулинатсинтазы, то это не имеет большого физиологического значения.

Дефицит пиридоксальфосфата и лекарственные препараты, которые являются его структурными аналогами, снижают активность аминолевулинатсинтазы.

Синтез билирубина

В клетках РЭС гем в составе гемоглобина окисляется молекулярным кислородом. В реакциях последовательно происходит разрыв метинового мостика между 1-м и 2-м пиррольными кольцами гема с их восстановлением, отщеплением железа и белковой части и образованием оранжевого пигмента билирубина.

Билирубин – токсичное, жирорастворимое вещество, способное нарушать окислительное фосфорилирование в клетках. Особенно чувствительны к нему клетки нервной ткани.

Выведение билирубина

Из клеток ретикуло-эндотелиальной системы билирубин попадает в кровь. Здесь он находится в комплексе с альбумином плазмы, в гораздо меньшем количестве – в комплексах с металлами, аминокислотами, пептидами и другими малыми молекулами. Образование таких комплексов не позволяет выделяться билирубину с мочой. Билирубин в комплексе с альбумином называется свободный (неконъюгированный ) или непрямой билирубин.

Что такое прямой и непрямой билирубин?

Билирубин сыворотки крови делится на две фракции (разновидности): прямой и непрямой, в зависимости от результата лабораторной реакции со специальным реактивом (диазореактив). Непрямой билирубин – это токсичный билирубин, который недавно образовался из гемоглобина и еще не связался в печени. Прямой билирубин – это билирубин, обезвреженный в печени и подготовленный для вывода из организма.

28. Желтухи

Во всех случаях содержание билирубина в крови повышается. При достижении определённой концентрации он диффундирует в ткани, окрашивая их в жёлтый цвет. Пожелтение тканей из-за отложения в них билирубина называют желтухой. Клинически желтуха может не проявляться до тех пор, пока концентрация билирубина в плазме крови не превысит верхний предел нормы более чем в 2,5 раза, т.е. не станет выше 50 мкмоль/л.

Желтуха новорождённых

Частая разновидность гемолитической желтухи новорождённых - "физиологическая желтуха", наблюдающаяся в первые дни жизни ребёнка. Причиной повышения концентрации непрямого билирубина в крови служит ускоренный гемолиз и недостаточность функции белков и ферментов печени, ответственных за поглощение, конъюгацию и секрецию прямого билирубина. У новорождённых не только снижена активность УДФ-глюкуронилтрансферазы, но и, по-видимому, недостаточно активно происходит синтез второго субстрата реакции конъюгации УДФ-глюкуроната.

Известно, что УДФ-глюкуронилтрансфераза - индуцируемый фермент (см. раздел 12). Новорождённым с физиологической желтухой вводят лекарственный препарат фенобарбитал, индуцирующее действие которого было описано в разделе 12.

Одно из неприятных осложнений "физиологической желтухи" - билирубиновая энцефалопатия. Когда концентрация неконъюгированного билирубина превышает 340 мкмоль/л, он проходит через гематоэнцефалический барьер головного мозга и вызывает его поражение.

Микросомальное окисление

Микросомальные оксидазы - ферменты, локализованные в мембранах гладкого ЭР, функционирующие в комплексе с двумя внемитохондриальными ЦПЭ. Ферменты, катализирующие восстановление одного атома молекулы О 2 с образованием воды и включение другого атома кислорода в окисляемое вещество, получили название микросомальных оксидаз со смешанной функцией или микросомальных монооксигеназ. Окисление с участием монооксигеназ обычно изучают, используя препараты микросом.

Функционирование цитохрома Р 450 Известно, что молекулярный кислород в триплетном состоянии инертен и не способен взаимодействовать с органическими соединениями. Чтобы сделать кислород реакционно-способным, необходимо его превратить в синглетный, используя ферментные системы его восстановления. К числу таковых принадлежит моноксигеназная сисгема, содержащая цитохром Р 450 . Связывание в активном центре цитохрома Р 450 липофильного вещества RH и молекулы кислорода повышает окислительную активность фермента.

Один атом кислорода принимает 2 е и переходит в форму О 2- . Донором электронов служит NADPH, который окисляется NADPH-цитохром Р 450 редуктазой. О 2- взаимодействует с протонами: О 2- + 2Н + → Н 2 О, и образуется вода. Второй атом молекулы кислорода включается в субстрат RH, образуя гидроксильную группу вещества R-OH (рис. 12-3).

Суммарное уравнение реакции гидроксилирования вещества RH ферментами микросомального окисления:

RH + О 2 + NADPH + Н + → ROH + Н 2 О + NADP + .

Субстратами Р 450 могут быть многие гидрофобные вещества как экзогенного (лекарственные препараты, ксенобиотики), так и эндогенного (стероиды, жирные кислоты и др.) происхождения.

Таким образом, в результате первой фазы обезвреживания с участием цитохрома Р 450 происходит модификация веществ с образованием функциональных групп, повышающих растворимость гидрофобного соединения. В результате модификации возможна потеря молекулой её биологической активности или даже формирование более активного соединения, чем вещество, из которого оно образовалось.

Образование и обезвреживание n-крезола и фенола

Под действием ферментов бактерий из аминокислоты тирозина могут образовываться фенол и крезол путём разрушения боковых цепей аминокислот микробами (рис. 12-9).

Всосавшиеся продукты по воротной вене поступают в печеНb, где обезвреживание фенола и крезола может происходить путём конъюгации с сернокислотным остатком (ФАФС) или с глюкуроновой кислотой в составе УДФ-глюкуроната. Реакции конъюгации фенола и крезола с ФАФС катализирует фермент сульфотрансфе-раза (рис. 12-10).

Конъюгация глюкуроновых кислот с фенолом и крезолом происходит при участии фермента УДФ-глюкуронилтрансферазы (рис. 12-11). Продукты конъюгации хорошо растворимы в воде и выводятся с мочой через почки. Повышение количества конъюгатов глюкуроновой кислоты с фенолом и крезолом обнаруживают в моче при увеличении продуктов гниения белков в кишечнике.

Рис. 12-8. Обезвреживание бензантрацена. Е 1 - фермент микросомальной системы; Е 2 - эпоксидгидратаза.

Образование и обезвреживание индола и скатола

В кишечнике из аминокислоты триптофана микроорганизмы образуют индол и скатол. Бактерии разрушают боковую цепь триптофана, оставляя нетронутой кольцевую структуру.

Индол образуется в результате отщепления бактериями боковой цепи, возможно, в виде серина или аланина (рис. 12-12).

Скатол и индол обезвреживаются в печени в 2 этапа. Сначала в результате микросомального окисления они приобретают гидроксильную группу. Так, индол переходит в индоксил, а затем вступает в реакцию конъюгации с ФАФС, образуя индоксилсерную кислоту, калиевая соль которой получила название животного индикана (рис. 12-13).

Д. Индукция защитных систем

Многие ферменты, участвующие в первой и второй фазе обезвреживания, - индуцируемые белки. Ещё в древности царь Митридат знал, что если сисгематически принимать небольшие дозы яда, можно избежать острого отравления. "Эффект Митридата" основан на индукции определённых защитных систем (табл. 12-3).

В мембранах ЭР печени цитохрома Р 450 содержится больше (20%), чем других мембрано-связанных ферментов. Лекарственное вещество фенобарбитал активирует синтез цитохрома Р 450 , УДФ-глюкуронилтрансферазы и эпоксид гидролазы. Например, у животных, которым вводили индуктор фенобарбитал, увеличивается площадь мембран ЭР, которая достигает 90% всех мембранных структур клетки, и, как следствие, - увеличение количества ферментов, участвующих в обезвреживании ксенобиотиков или токсических веществ эндогенного происхождения.

При химиотерапии злокачественных процессов начальная эффективность лекарства часто постепенно падает. Более того, развивается множественная лекарственная устойчивость, т.е. устойчивость не только к этому лечебному препарату, но и целому ряду других лекарств. Это происходит потому, что противоопухолевые лекарства индуцируют синтез Р-гликопротеина, глутатионтрансферазы и глутатиона. Использование веществ, ингибирующих или активирующих синтез Р-гликопротеина, а также ферменты синтеза глутатиона, повышает эффективность химиотерапии.

Металлы являются индукторами синтеза глутатиона и низкомолекулярного белка металлотионеина, имеющих SH-группы, способные связывать их. В результате возрастает устойчивость клеток организма к ядам и лекарствам.

Повышение количества глутатионтрансфераз увеличивает способность организма приспосабливаться к возрастающему загрязнению внешней среды. Индукцией фермента объясняют отсутствие антиканцерогенного эффекта при применении ряда лекарственных веществ. Кроме того, индукторы синтеза глутатионтрансферазы - нормальные метаболиты - половые гормоны, йодтиронины и кортизол. Катехол-амины через аденилатциклазную систему фосфорилируют глутатионтрансферазу и повышают её активность.

Ряд веществ, в том числе и лекарств (например, тяжёлые металлы, полифенолы, S-алкилы глутатиона, некоторые гербициды), ингибируют глутатионтрансферазу.

37. Конъюгация - вторая фаза обезвреживание веществ

Вторая фаза обезвреживания веществ - реакции конъюгации, в ходе которых происходит присоединение к функциональным группам, образующимся на первом этапе, других молекул или групп эндогенного происхождения, увеличивающих гидрофильность и умеНbшающих токсичность ксенобиотиков (табл. 12-2).

УДФ-глюкуронилтрансферазы

Локализированные в основном в ЭР уридин-дифосфат (УДФ)-глюкуронилтрансферазы присоединяют остаток глюкуроновой кислоты к молекуле вещества, образованного в ходе мик-росомального окисления (рис. 12-4).

В общем виде реакция с участием УДФ-глюкуронилтрансферазы записывается так:

ROH + УДФ-С 6 Н 9 О 6 = RO-C 6 H 9 O 6 + УДФ.

Сульфотрансферазы